Answer:
The system loses 90 kJ of heat
Explanation:
We can answer the question by using the 1st law of thermodynamics, which states that:
where
is the change in internal energy of the system
is the heat absorbed by the system (positive if absorbed, negative if released by the system)
is the work done by the system (positive if done by the system, negative if done by the surrounding on the system)
In this problem, we have:
is the work done (negative, because it is done by the surrounding on the system)
is the increase in internal energy
Using the equation above, we can find Q, the heat absorbed/released by the system:
And the negative sign means that the system has lost this heat.
Answer:
c) 11.9 yr
Explanation:
The orbital period is proportional to r^(3/2) and does not depend on the satellite's mass. Any object at Jupiter position will have the same orbital period regardless of mass.
By keppler's law we know that
T^2= r^3
T= orbital time period
r= mean distance of the planet from the Sun.
clearly, The orbital period does not depend on the satellite's mass
there, the correct answer will be c= 11.9 yr.
Answer:
I = 0.5 A
Explanation:
Given: P=60 Watts, Voltage supply V = 120 Volts (for primary coil)
Solution:
we have P = V I
⇒ I = P /V = 60 Watts / 120 Volts
I = 0.5 A
Washington DC and new Mexico