
Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
On driving your motorcycle in a circle of radius 75 m on wet pavement, the fastest you can go before you lose traction, assuming the coefficient of static friction is 0.20 is 147m/s
Friction helps to maintain the slipping of the vehicle on the road hence lays a very important role.
Maximum velocity of a road with friction is given by the formula,
v = μRg
where, v is the maximum velocity
μ is the coefficient of static friction
R is the radius of the circle road
g is the acceleration due to gravity
Given,
μ = 0.20
R = 75m
g = 9.8m/s²
On substituting the given values in the above formula,
v = 0.20× 75 ×9.8
v = 147m/s
So, the Maximum velocity of the wet road is 147m/s.
Learn more about Velocity here, brainly.com/question/18084516
#SPJ4
Answer:
B. An electric current into a magnetic field
Explanation:
The generation of electrical power requires relative motion between a magnetic field and a conductor. In a generator, mechanical energy is converted into electrical energy. The electricity produced by most generators is in the form of alternating current.
Answer:

Explanation:
Given the following data;
Frequency = 4.0 x 10⁹ Hz
Planck's constant, h = 6.626 x 10-34 J·s.
To find the energy of the electromagnetic wave;
Mathematically, the energy of an electromagnetic wave is given by the formula;
E = hf
Where;
E is the energy possessed by a wave.
h represents Planck's constant.
f is the frequency of a wave.
Substituting the values into the formula, we have;


<span>It is important to use a fixed common reference point on your work peace or drawing to avoid cumulative error</span>