Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
It confirmed medeleeve's hypothesis (prediction) and showed the use of his table
For this specific problem, the photons have been localized to
D<span>x = </span>0.027m
uncertainty. I am hoping that this answer has satisfied your
query about and it will be able to help you, and if you’d like, feel free to
ask another question.
Transformer
<u>Explanation:</u>
A transformer is a device with two or more magnetically coupled windings. A time varying current in one coil (primary winding) generates a magnetic field which induces a voltage in the other coil (secondary winding). Transformers are capable of either increasing or decreasing the voltage and current levels of their supply, without modifying its frequency, or the amount of electrical power being transferred from one winding to another via the magnetic circuit. There are two types of transformer:
1. Step up transformer - increases voltage
2. Step down transformer - decreases voltage
As the <em>voltage</em> applied to a crcuit increases, the power dissipated by the circuit, and the current flowing through the circuit, both also increase.