Explanation:
Given that,
The frequency of electromagnetic spectrum is 
(A) Let the wavelength of this radiation is
. We know that,

So, the wavelength of this radiation is
.
(B) Let E is the energy associated with this radiation. Energy of an electromagnetic radiation is given by :

h is Planck's constant

1 kcal = 4184 J
It means,

Hence, this is the required solution.
Answer;
B. They are large molecules that increase the rate of biologically important reactions.
Explanation;
-Enzymes are biological molecules, that are protein in nature, that significantly speed up the rate of virtually all of the chemical reactions that take place within cells.
-They are vital for life and serve a wide range of important functions in the body, such as aiding in digestion and metabolism. Some enzymes help break large molecules into smaller pieces that are more easily absorbed by the body. Other enzymes help bind two molecules together to produce a new molecule.
First, recognize that this is an elimination reaction in which hydroxide must leave and a double bond must form in its place. It is likely an E2 reaction. Here is an efficient mechanism:
1) Pre-reaction: Protonate the -OH to make it a good leaving group, water. H2SO4 or any strong H+ donor works. The water is positively charged but still connected to the compound.
2) E2: Use a sterically hindered base, such as tert-butoxide (tButO-) to abstract the hydrogen from the secondary carbon. [You want a sterically hindered base because a strong, non-sterically hindered base could also abstract a hydrogen from one of the two methyl groups on the tertiary carbon, and that leads to unwanted products, which is not efficient]. As the proton of hydrogen is abstracted, water leaves at the same time, creating an intermediate tertiary carbocation, and the 2 electrons in the C-H bond immediately are used to make a double bond towards the partial positive charge.
In the products we see the major product and water, as expected. Even though you have an intermediate, remember that an E2 mechanism technically happens in one step after -OH protonation.
Answer:
V₂ = 2509.62 cm³
Explanation:
Given data:
Initial volume = 1500 cm³
Initial temperature = -65°C (-65 + 273 = 208 K)
Final temperature = 75°C ( 75 +273 = 348 K)
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 1500 cm³ × 348 K / 208 k
V₂ = 522000 cm³.K / 208 k
V₂ = 2509.62 cm³