The Moon s escape speed will be smaller than Earth's.
The minimum speed that is required for an object to free itself from the gravitational force exerted by a massive object.
The formula of escape speed is
where
v is escape velocity
G is universal gravitational constant
M is mass of the body to be escaped from
r is distance from the center of the mass
we can say that,
Escape speed depends on the gravity of the object trying to hold the spacecraft from escaping.
we know that,
The Moon's surface gravity is about 1/6th as powerful or about 1.6 meters per second per second.
since, v ∝ g
The Moon s escape speed will be smaller than Earth's.
Learn more about escape speed here:
<u>brainly.com/question/15318861</u>
#SPJ4
1. Proton
2. negative ion
3. electric charge
4. electron
5. repel
6. attract
7. positive ion
The main difference between the model of the atom proposed by Greek philosophers and the model proposed centuries later by Dalton is that the Greek one was mainly speculative and philosophical - it wasn't based on real evidence, but on their suggestions and thoughts about the matter. On the other hand, Dalton had the means to prove his theory using viable evidence, not just speculations.
Answer:
a=0.212 m/s²
Explanation:
Given that
q= 10⁻⁹ C
m = 5 x 10⁻⁹ kg
Magnetic filed ,B= 0.003 T
Speed ,V= 500 m/s
θ= 45°
Lets take acceleration of the mass is a m/s²
The force on the charge due to magnetic filed B
F= q V B sinθ
Also F= m a ( from Newton's law)
By balancing these above two forces
m a= q V B sinθ



a=0.212 m/s²
Answer:
B. 1500 kg*m/s
Explanation:
Momentum p = m* v
In any type of collision, the total momentum is preserved!
The total momentum before and the total momentum after the collision is the same. We know the mass and speed after the collision so we can calculate the total momentum.
p1 + p2 =
m1*v1 + m2*v2
m1 = me = 300 kg
v1 = 3 m/s
v2 = 2 m/s
Substitute the given numbers:
300*3 + 300+2
900 + 600
1500 kg*m/s, which is answer B.