Answer:
D.None of these
Explanation:
The derivation of acceleration formula:
Let us call the 5kg mass
and the 4kg mass
. If the tension in the string is
then for the mass 
(1).
<em>(the negative sign on the right side indicates that acceleration is downwards)</em>
And for the mass 
(2).
<em> (the acceleration is upwards, hence the positive sign)</em>
Solving for
in the 2nd equation we get:
,
and putting this into the 1st equation we get:


Back to the question:
Using the formula for the acceleration we find


which is the acceleration that none of the given choices offer. Also, the acceleration of the two blocks is the same, because if it weren't, the difference in the instantaneous velocities of the objects would cause the string to break. Therefore, these two reasons make us decide that none of the choices are correct.
The transmission of light waves is usually done through cornea of the eyes, then move through another opening which is regarded as pupil before it will get to the retina.
- Light waves can be regarded as moving energy which contains microscopic particles known as photons.
- The vision of the eye can be completed through the light wave passing through the components of the eyes and this process goes thus;
- Light will move through the (cornea) which is situated at the front area of the eyes into lens.
- Then both the cornea and the lens give room for the focusing of the light rays to the retina which is situated at the back of the eye .
- Then through the help of the cells in the retina, the light will be absorbed and then be converted to electrochemical impulses and then transfer it to the brain as well as optic nerve.
Therefore, light wave are form of tiny microscopic particles.
brainly.com/question/19734585?referrer=searchResults
Answer:
Work done by the gardner is 500 J
Explanation:
As we know that the gardner apply force perpendicular upward by magnitude 300 N and along the floor horizontal force is 100 N
so we have

now the displacement of the gardner along the floor is

now work done is given as

so we have

