Answer:
Explanation:
THE CORECT QUESTION
A 50.0 mL solution of 0.127 M KOH is titrated with 0.254 M HCl. Calculate the pH of the solution after the addition of each of the given amounts of HCl.
SOLUTION
Get the concentration of the HCl first using titration formula
CA X V A / CB VB = NA/ NB
Equation of reation; KOH + HCl => KCl + H2O
CA = 0.254 M
CB = 0.127
VA = 1/0.254 = 3.937
CA (after the addition) = 0.127 x 50 / 3.937
= 1.612 M
But pH = - Log[hydrogen ion]
= -log 1.612
=
A.92 all Uranium atoms contain the same amount of protons
The best and most correct answer among the choices provided by your question is the second choice or letter B.
<span>Regarding the second electron affinity for an oxygen, i. e., the electron affinity for O-, it is much larger and negative.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
Explanation:
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
Bellow we have the balanced chemical equation of the complete combustion of C₃H₇OH:
C₃H₇OH (l) + (9/2) O₂ (g) → 3 CO₂ (g) + 4 H₂O (g)
to have integer coefficients we multiply the reaction with 2:
2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
where:
(l) - liquid
(g) - gaseous
Learn more about:
combustion reaction
brainly.com/question/9425444
balancing chemical equations
brainly.com/question/13941483
#learnwithBrainly