This is true. Hope this helped:)
The pressure generated by the piston at the input cylinder must be:
p = F / A = 250 lb-f / 30 in^2
The pressure generated by the piston at the output cylinders is p = F / A = 775 lb-f / A.
Pascal principle rules that both pressures are equal, so:
250 lb-f / 30 in^2 = 775 lb-f / A => A = 775 lb-f * 30 in^2 / 250 lb-f = 93 in^2
Gvien that each output cylinder are 30in^2 you need 93 / 30 = 3.1 cylinders.
Which means that at least you need 4 cylinders to generate a force at least of 775 lb-f.
Answer: 4
The answer to your question is D
Answer:
Explanation:
We shall write the velocities given in vector form to make the solution easy.
The velocity of water with respect to earth that is waV(e) makes 30 degree with north or 60 degree with east so in vector form
waV(e) = 2.2 cos 60 i + 2.2 sin 60 j
waV(e) = 1.1 i + 1.9 j
Similarly , velocity of wind with respect to earth that is wiV(e) , is making 50 degree with west or - ve of x axes so we cal write it in vector form as follows
wiV(e) = - 4.5 cos 50 i - 4.5 sin 50 j
wiV(e) = - 2.89 i - 3.45 j
Now we have to calculate velocity of wind with respect to water that is
wiVwa
wiV( wa) = wiV ( e)+ eV(wa)
= wiV( e)- waV(e)
- 2.89 i - 3.45 j - 1.1 i - 1.9 j
= - 3.99 i - 5.35 j
Magnitude of this relative velocity
D² = 3.99² + 5.35²
d = 6.67 m /s