Answer:
cross-weight is used to tighten it up.
Explanation:
and yes this is important because Cross-weight percentage compares the diagonal weight totals to the car's total weight.
hope this help
(mark this answer as an brainliest answer)
Answer & Explanation:
function Temprature
NYC=[33 33 18 29 40 55 19 22 32 37 58 54 51 52 45 41 45 39 36 45 33 18 19 19 28 34 44 21 23 30 39];
DEN=[39 48 61 39 14 37 43 38 46 39 55 46 46 39 54 45 52 52 62 45 62 40 25 57 60 57 20 32 50 48 28];
%AVERAGE CALCULATION AND ROUND TO NEAREST INT
avgNYC=round(mean(NYC));
avgDEN=round(mean(DEN));
fprintf('\nThe average temperature for the month of January in New York city is %g (F)',avgNYC);
fprintf('\nThe average temperature for the month of January in Denvar is %g (F)',avgDEN);
%part B
count=1;
NNYC=0;
NDEN=0;
while count<=length(NYC)
if NYC(count)>avgNYC
NNYC=NNYC+1;
end
if DEN(count)>avgDEN
NDEN=NDEN+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in New York city was above the average',NNYC);
fprintf('\nDuring %g days, the temprature in Denvar was above the average',NDEN);
%part C
count=1;
highDen=0;
while count<=length(NYC)
if NYC(count)>DEN(count)
highDen=highDen+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in Denver was higher than the temprature in New York city.\n',highDen);
end
%output
check the attachment for additional Information
The effect would be the altitude of the air, the higher you go up the closer you are to space we’re there’s no oxygen and everything moves slow so when your trying to fly across the world it could feel like your moving slower
Answer:
a. ε₁=-0.000317
ε₂=0.000017
θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain =3.335 *10^-4
Associated average normal strain ε(avg) =150 *10^-6
θ = 31.71 or -58.29
Explanation:

ε₁=-0.000317
ε₂=0.000017
To determine the orientation of ε₁ and ε₂

θ= -13.28° and 76.72°
To determine the direction of ε₁ and ε₂

=-0.000284 -0.0000335 = -0.000317 =ε₁
Therefore θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain

=3.335 *10^-4

ε(avg) =150 *10^-6
orientation of γmax

θ = 31.71 or -58.29
To determine the direction of γmax

= 1.67 *10^-4
Answer:
A. optical isolation
Explanation:
well I can't really give a good explanation because I also saw the same question in my exams and option A was the correct answer