1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
3 years ago
12

Someone please help me with this I’m stuck on it ?!i don’t have a lot of time

Engineering
1 answer:
Kitty [74]3 years ago
6 0
Python, Ruby, JavaScript, Java, and C++
You might be interested in
A counter-flow double-piped heat exchange is to heat water from 20oC to 80oC at a rate of 1.2 kg/s. The heating is to be accompl
lawyer [7]

Answer:

110 m or 11,000 cm

Explanation:

  • let mass flow rate for cold and hot fluid = M<em>c</em> and M<em>h</em> respectively
  • let specific heat for cold and hot fluid = C<em>pc</em> and C<em>ph </em>respectively
  • let heat capacity rate for cold and hot fluid = C<em>c</em> and C<em>h </em>respectively

M<em>c</em> = 1.2 kg/s and M<em>h = </em>2 kg/s

C<em>pc</em> = 4.18 kj/kg °c and C<em>ph</em> = 4.31 kj/kg °c

<u>Using effectiveness-NUT method</u>

  1. <em>First, we need to determine heat capacity rate for cold and hot fluid, and determine the dimensionless heat capacity rate</em>

C<em>c</em> = M<em>c</em> × C<em>pc</em> = 1.2 kg/s  × 4.18 kj/kg °c = 5.016 kW/°c

C<em>h = </em>M<em>h</em> × C<em>ph </em>= 2 kg/s  × 4.31 kj/kg °c = 8.62 kW/°c

From the result above cold fluid heat capacity rate is smaller

Dimensionless heat capacity rate, C = minimum capacity/maximum capacity

C= C<em>min</em>/C<em>max</em>

C = 5.016/8.62 = 0.582

          .<em>2 Second, we determine the maximum heat transfer rate, Qmax</em>

Q<em>max</em> = C<em>min </em>(Inlet Temp. of hot fluid - Inlet Temp. of cold fluid)

Q<em>max</em> = (5.016 kW/°c)(160 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(140) °c = 702.24 kW

          .<em>3 Third, we determine the actual heat transfer rate, Q</em>

Q = C<em>min (</em>outlet Temp. of cold fluid - inlet Temp. of cold fluid)

Q = (5.016 kW/°c)(80 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(60) °c = 303.66 kW

            .<em>4 Fourth, we determine Effectiveness of the heat exchanger, </em>ε

ε<em> </em>= Q/Qmax

ε <em>= </em>303.66 kW/702.24 kW

ε = 0.432

           .<em>5 Fifth, using appropriate  effective relation for double pipe counter flow to determine NTU for the heat exchanger</em>

NTU = \\ \frac{1}{C-1} ln(\frac{ε-1}{εc -1} )

NTU = \frac{1}{0.582-1} ln(\frac{0.432 -1}{0.432 X 0.582   -1} )

NTU = 0.661

          <em>.6 sixth, we determine Heat Exchanger surface area, As</em>

From the question, the overall heat transfer coefficient U = 640 W/m²

As = \frac{NTU C{min} }{U}

As = \frac{0.661 x 5016 W. °c }{640 W/m²}

As = 5.18 m²

            <em>.7 Finally, we determine the length of the heat exchanger, L</em>

L = \frac{As}{\pi D}

L = \frac{5.18 m² }{\pi (0.015 m)}

L= 109.91 m

L ≅ 110 m = 11,000 cm

3 0
3 years ago
Hey answr this sajida Yusof
Allisa [31]
What do u need? Rusbaisuwvwbs
5 0
3 years ago
Read 2 more answers
A rigid tank with a total volume of 0.05 m3 initially contains a two-phase liquid-vapor mixture of water at a pressure of 15 bar
Westkost [7]

Answer:

a) m_{2} = 0.753\,kg, b) Q_{in} = 2122.963\,kJ

Explanation:

A rigid tank means a storage whose volume is constant. Process is entirely isobaric. Initial and final properties of water are included below:

State 1 - Gas-Vapor Mixture

P = 1500\,kPa

T = 198.29^{\textdegree}C

\nu = 0.02726\,\frac{m^{3}}{kg}

u = 1192.94\,\frac{kJ}{kg}

h_{g} = 2791.0\,\frac{kJ}{kg}

x = 0.2

State 2 - Gas-Vapor Mixture

P = 1500\,kPa

T = 198.29^{\textdegree}C

\nu = 0.06643\,\frac{m^{3}}{kg}

u = 1718.12\,\frac{kJ}{kg}

h_{g} = 2791.0\,\frac{kJ}{kg}

x = 0.5

The model for the rigid tank is created by using the First Law of Thermodynamics:

Q_{in} - (m_{1}-m_{2})\cdot h_{g} = m_{2}\cdot u_{2}-m_{1}\cdot u_{1}

Initial and final masses are:

m_{1} = \frac{V_{1}}{\nu_{1}}

m_{1} = \frac{0.05\,m^{3}}{0.02726\,\frac{m^{3}}{kg} }

m_{1} = 1.834\,kg

m_{2} = \frac{V_{2}}{\nu_{2}}

m_{2} = \frac{0.05\,m^{3}}{0.06643\,\frac{m^{3}}{kg} }

m_{2} = 0.753\,kg

a) The final mass within the tank is:

m_{2} = 0.753\,kg

b) The total amount of heat transfer is:

Q_{in} = m_{2}\cdot u_{2}-m_{1}\cdot u_{1}+ (m_{1}-m_{2})\cdot h_{g}

Q_{in} = (0.753\,kg)\cdot (1718.12\,\frac{kJ}{kg} )- (1.834\,kg)\cdot (1192.94\,\frac{kJ}{kg} ) + (1.081\,kg)\cdot (2791.0\,\frac{kJ}{kg} )

Q_{in} = 2122.963\,kJ

5 0
3 years ago
Rank the magnitudes of the diffusion coefficients from greatest to least for the following systems:(a) Cr in Fe at 600°C; (b) C
jek_recluse [69]

Answer:

Explanation:

The rank of the magnitude of the diffusion coefficient from greatest to least is as follows:

C in Fe at 900°C > Cr in Fe at 900°C > Cr in Fe at 600°C

Reason

C in Fe is an interstitial impurity while Cr in Fe is a substutional impurity.Therefore interstitial impurity occurs in C in Fe systems,while substutitional diffusion occurs in Cr in Fe system.Interstitial is much faster than substitutional diffusion hence the order

Also with increasing temperature magnitude of diffusion coefficient increases,due to the relation.

     D = D₀exp(-Qd/RT)

Where D₀=Temperature independent per exponential

           Qd= The activation energy for diffusion

             R= Universal gas constant

              T=absolute temperature

3 0
3 years ago
Read 2 more answers
Help me!!
kati45 [8]

Answer:  System Consists Of 1 Kg Of CO2 (Cp = 46.4 J Moll K:') Gas Initially At 1 Bar And 300K. The System Undergo

Explanation:

6 0
2 years ago
Other questions:
  • During January, at a location in Alaska winds at -20°C can be observed, However, several meters below ground the temperature rem
    12·1 answer
  • Air is cooled and dehumidified as it flows over the coils of refrigeration system at 100 kPa from 30 ºC and relative humidityof
    14·1 answer
  • Often an attacker crafts e-mail attacks containing malware designed to take advantage of the curiosity or even greed of the reci
    14·1 answer
  • Why do engineers (and others) use the design process?
    13·1 answer
  • A ball bearing has been selected with the bore size specified in the catolog as 35.000 mm to 35.020 mm. Specify appropriate mini
    15·1 answer
  • Should you ever grab a tool with expose wiring
    13·2 answers
  • Zachary finished an internship as a Software Quality Assurance Engineer. For which job is he best qualified?
    8·2 answers
  • ENERGIA
    7·1 answer
  • Coving is a curved edge between a floor and a wall.<br> O True<br> O False
    13·2 answers
  • Please help me on this it’s due now
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!