Answer: The percent ionization of
in a 0.050 M
solution is 8.9 %
Explanation:

cM 0 0

So dissociation constant will be:

Give c= concentration = 0.050 M and
= degree of ionisation = ?

Putting in the values we get:


percent ionisation =
Sodium/natrium is a metal from first column group so it should have one 1+ charge. Phosphate ion has 3- charge. That is why there 3 natrium ion for 1 phosphate ion when this molecule is dissolved in water. The ion formula would be:
(Na)

(PO

) ==> 3 Na

+ PO
First solve the moles of oxgen present in the compound
mol O = 6.93 g O ( 1 mol O / 16 g O )
mol O = 0.43 mol H
then solve the moles of hydrogen present
mol H = ( 7.36 - 6.93) g H ( 1 mol H / 1 g H)
mol H = 0.43 mol H
so the O and H are in the same mole content so the molecular formula would be OH, but the molar mass will not satisfy. so the answer would be
H2O2
<h3>1</h3>
Species shown in bold are precipitates.
- Ca(NO₃)₂ + 2 KOH → Ca(OH)₂ + 2 KNO₃
- Ca(NO₃)₂ + Na₂C₂O₄ → CaC₂O₄ + 2 NaNO₃
- Cu(NO₃)₂ + 2 KI → CuI₂ + 2 KI
- Cu(NO₃)₂ + 2 KOH → Cu(OH)₂ + 2 KNO₃
- Cu(NO₃)₂ + Na₂C₂O₄ → CuC₂O₄ + 2 NaNO₃
- Ni(NO₃)₂ + 2 KOH → Ni(OH)₂ + 2 KNO₃
- Ni(NO₃)₂ + Na₂C₂O₄ → NiC₂O₄ + 2 NaNO₃
- Zn(NO₃)₂ + 2 KOH → Zn(OH)₂ + 2 KNO₃
- Zn(NO₃)₂ + Na₂C₂O₄ → ZnC₂O₄ + 2 NaNO₃
<h3>2</h3>
A double replacement reaction takes place only if it reduces in the concentration of ions in the solution. For example, the reaction between Ca(NO₃)₂ and KOH produces Ca(OH)₂. Ca(OH)₂ barely dissolves. The reaction has removed Ca²⁺ and OH⁻ ions from the solution.
Some of the reactions lead to neither precipitates nor gases. They will not take place since they are not energetically favored.
<h3>3</h3>
Compare the first and last row:
Both Ca(NO₃)₂ and Zn(NO₃)₂ react with KOH. However, between the two precipitates formed, Ca(OH)₂ is more soluble than Zn(OH)₂.
As a result, add the same amount of KOH to two Ca(NO₃)₂ and Zn(NO₃)₂ of equal concentration. The solution that end up with more precipitate shall belong to Zn(NO₃)₂.
<h3>4</h3>
Compare the second and third row:
Cu(NO₃)₂ reacts with KI, but Ni(NO₃)₂ does not. Thus, add equal amount of KI to the two unknowns. The solution that forms precipitate shall belong to Cu(NO₃)₂.