Ca + 2HCl = CaCl₂ + H₂
c=4.50 mol/l
v=2.20 l
n(HCl)=cv
m(Ca)/M(Ca)=n(HCl)/2
m(Ca)=M(Ca)cv/2
m(Ca)=40g/mol·4.50mol/l·2.20l/2=198 g
198 grams of Ca are needed
From 5 L to moles, just divide 5 by 22.4. I got 0.22 moles of H2.
From 5 moles to liters, just multiply 5 by 22.4. I got 112 L of H2.
Answer:
The answer to your question is the letter C. three times as much
Explanation:
Data
First step = 6 m
Second step = 18 m
Potential energy is the energy stored that depends on its position.
Formula
Pe = mgh
m = mass; g = gravity; h = height
Potential energy of the first step
Pe1 = 6mg
Potential energy of the second step
Pe2 = 18mg
-Divide the Pe2 by the Pe1
Pe2/Pe1 = 18mg/6mg
= 3
The answer is false..............<span>kinetic theory of gases is a topic that can explain many everyday observations. Have you ever wondered why water boils faster at higher altitudes? Or why inflatable pool toys seem flat after sitting in a cold garage? How about why you can smell a candle all throughout the house? All of these phenomena and many more can be explained by the kinetic theory of gases.</span>
A bronsted lowry base will react to accept protons