Answer:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. Therefore, there must be the same number of atoms of each element on each side of a chemical equation.
Explanation:
Explanation:
in the case of blood loss, you need blood from someone with your blood type or with universal donor type
Chloride ions Cl –(aq) (from the dissolved sodium chloride) are discharged at the positive electrode as chlorine gas, Cl 2(g) sodium ions Na +(aq) (from the dissolved sodium chloride) and hydroxide ions OH –(aq) (from the water) stay behind - they form sodium hydroxide solution, NaOH(aq)
Electronegativity is a measure of an atom's ability to attract shared electrons to itself. On the periodic table, electronegativity generally increases as you move from left to right across a period and decreases as you move down a group.
D = m / V
It even gives you the density of gold in the problem. Major hint. Once you know the volume (using V = m / D) then you can calculate the height (thickness) from the equation...
V = L x W x H
Volume = Length x Width x Height
start by converting 200.0 mg into grams
1000 mg = 1 g
200. mg x (1 g / 10^3 mg) = 0.200 g
V = m / D
V = 0.200 g / (19.32 g/cm^3)
V = 0.01035 cm^3
Convert 2.4 ft and 1 ft to cm
2.4 ft x (12 in / 1 ft) x (2.54 cm / 1 in) = 73.15 cm
1 ft = 30.48 cm
Compute the height (thickness)
V = LxWxH
H = V / LW = 0.01035 cm^3 / 73.15 cm / 30.48 cm
H = 4.64 x 10^-6 cm
Convert to nanometers
4.64 x 10^-6 cm x (1 m / 100 cm) x (10^9 nm / 1 m) = 46.4 nm
Knowing the atomic radius of gold, I might have asked my students for the minimum number of gold atoms in this thickness of gold. This would assume that the gold atoms are all in a row. This would give the minimum number of gold atoms.
Atomic radius gold = 174 pm
Diameter = 348 pm
46.4 nm x (1 m / 10^9 nm) x (10^12 pm / 1 m) x (1 Au atom / 248 pm) = 133 atoms of gold