Answer:
Step-by-step explanation:
Given data:
SS={0,1,2,3,4}
Let probability of moving to the right be = P
Then probability of moving to the left is =1-P
The transition probability matrix is:
![\left[\begin{array}{ccccc}1&P&0&0&0\\1-P&1&P&0&0\\0&1-P&1&P&0\\0&0&1-P&1&P\\0&0&0&1-P&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26P%260%260%260%5C%5C1-P%261%26P%260%260%5C%5C0%261-P%261%26P%260%5C%5C0%260%261-P%261%26P%5C%5C0%260%260%261-P%261%5Cend%7Barray%7D%5Cright%5D)
Calculating the limiting probabilities:
π0=π0+Pπ1 eq(1)
π1=(1-P)π0+π1+Pπ2 eq(2)
π2=(1-P)π1+π2+Pπ3 eq(3)
π3=(1-P)π2+π3+Pπ4 eq(4)
π4=(1-P)π3+π4 eq(5)
π0+π1+π2+π3+π4=1
π0-π0-Pπ1=0
→π1 = 0
substituting value of π1 in eq(2)
(1-P)π0+Pπ2=0
from
π2=(1-P)π1+π2+Pπ3
we get
(1-P)π1+Pπ3 = 0
from
π3=(1-P)π2+π3+Pπ4
we get
(1-P)π2+Pπ4 =0
from π4=(1-P)π3+π4
→π3=0
substituting values of π1 and π3 in eq(3)
→π2=0
Now
π0+π1+π2+π3+π4=0
π0+π4=1
π0=0.5
π4=0.5
So limiting probabilities are {0.5,0,0,0,0.5}
The Slope is 3/5, because of the rise over run method
The Y-Intercept is -1, because the point that touches the y-axis is the y-intercept
Step-by-step explanation:
-7 because i now this by myself aND blah blah blah blah blah blah blah blah blah blah blah blah blah blah step by step nice
nice nice
cant read it sorry take another picture