Answer:
(5,5)
Step-by-step explanation:
You draw a graph and put an x where (5, -3) is and then from that point, you go up by 8 units
1. To solve this exercise, you must apply the formula for calculate the area of a trapezoid, which is shown below:
<span>
A=(b1+b2/2)h
</span><span>
A is the area of the trapezoid.
</span><span> b1 is the larger base of the trapezoid (b1=16-4=12 ft).
</span><span> b2 is the smaller base of the trapezoid (b2=10-4=6 ft).
</span><span> h is the height of the trapezoid (h=12-4=8 ft)
</span><span>
2. When you substitute these values into the formula A=(b1+b2/2)h, you obtain:
</span><span>
A=(b1+b2/2)h
</span><span> A=(12 ft+6 ft/2)(8 ft)
</span><span> A=9 ftx8ft
</span><span> A=72 ft²
</span><span>
3. </span><span>The length of fencing is:</span> a²=b²+c² a=√b²+c² a=√(8 ft)²+(6 ft)² a=10 ft Perimeter (Length of fencing)=12 ft+8 ft+6 ft+10 ft=36 ft
Answer:
-x² + 8x - 7
Step-by-step explanation:
Step 1: Write expression
(7 - x)(x - 1)
Step 2: FOIL (First Outside Inside Last)
7x - 7 - x² + x
Step 3: Combine like terms
-x² + 8x - 7