1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
3 years ago
5

A series of lines involving a common level in the spectrum of atomic hydrogen lies at 656.46 nm, 486.27 nm, 434.17 nm, and 410.2

9 nm. What is the wavelength of the next line in the series
Physics
1 answer:
julsineya [31]3 years ago
5 0

Answer:

The wavelength of next line in the series will be 397.05 nm

Explanation:

From Rydberg equation;

\frac{1}{\lambda} = R_H(\frac{1}{n_1^2} -\frac{1}{n_2^2})

where;

λ is the wavelength

n lines in the series

RH is Rydberg constant = 1.097 x 10⁷ m⁻¹

Also at a given maximum wavelength, we can determine the first line n₁ in the series

\frac{1}{\lambda_{max}R_H} = \frac{1}{n_1^2} -\frac{1}{(n_1 +1)^2} \\\\

\frac{1}{\lambda_{max}R_H} = \frac{2n_1+1}{n_1^2(n_1 +1)^2} \\\\\lambda_{max}R_H} = \frac{n_1^2(n_1 +1)^2}{2n_1+1}

Given;

maximum wavelength = 656.46 nm

\lambda_{max}R_H} = \frac{n_1^2(n_1 +1)^2}{2n_1+1}\\\\656.46 *10^{-9}*1.097*10^7 = \frac{n_1^2(n_1 +1)^2}{2n_1+1}\\\\7.2 = \frac{n_1^2(n_1 +1)^2}{2n_1+1}

Now, test for different values of n that will be equal to 7.2

let n₁ = 1

\frac{n_1^2(n_1 +1)^2}{2n_1+1} =  \frac{(1)^2(1 +1)^2}{2(1)+1} = 1.3\\

n₁(1) ≠ 7.2

Again, let n₁ = 2

\frac{n_1^2(n_1 +1)^2}{2n_1+1} =  \frac{(2)^2(2 +1)^2}{2(2)+1} = 7.2\\

∴ n₁(2) = 7.2

For the least wavelength given as 410.29 nm, n = ?

\frac{1}{\lambda} = R_H(\frac{1}{n_1^2} -\frac{1}{n_2^2})\\\\\frac{1}{410.29*10^{-9}} = 1.097*10^7(\frac{1}{2^2} -\frac{1}{n_2^2})\\\\\frac{1}{4.5} =\frac{1}{4} -\frac{1}{n_2^2}\\\\\frac{1}{n_2^2} =\frac{1}{4}  -\frac{1}{4.5} \\\\\frac{1}{n_2^2}  = 0.0277778\\\\n_2^2 = \frac{1}{0.0277778} \\\\n_2^2 = 36\\\\n_2= \sqrt{36}\  = 6

next line in the series will be 7

The wavelength of next line in the series will be;

\frac{1}{\lambda} = R_H(\frac{1}{n_1^2} -\frac{1}{n_2^2})\\\\\frac{1}{\lambda} = 1.097*10^7(\frac{1}{2^2} -\frac{1}{7^2})\\\\\frac{1}{\lambda}  =  1.097*10^7(0.22959)\\\\\frac{1}{\lambda}   = 2518602.3\\\\\lambda = 397.05 \ nm

Therefore, the wavelength of next line in the series will be 397.05 nm

You might be interested in
The diagram does not represent a real electric field because the field lines, can someone help explain this for me
Papessa [141]

electric field lines are graphical presentation of electric field intensity

It is the graphical way to represent the electric field variation

If we draw the tangent to electric field line then it will give the direction of net electric field at that point

So whenever we draw the electric field lines of a charge distribution then it will always follow this basic properties

here we will always follow these basic properties of field lines

now as we can see that here two positive charges are placed nearby so the electric field must be like it can not intersect at any point because at intersection of two lines the direction of electric field not defined

As we have two directions of tangents at that point

So here the incorrect presentation is the intersection of two field lines which is not possible


4 0
4 years ago
Two resistances, R1 and R2, are connected in series across a 9-V battery. The current increases by 0.450 A when R2 is removed, l
Rina8888 [55]

Answer:

a. R1 = 0.162 Ω

b. R2 = 0.340 Ω

Explanation:

Since the resistors R1 and R2 are connected in series, the current flowing through them when the 9 V battery is applied is 9/R1 + R2.

When the current increases by 0.450 A wen only R1 is in the circuit, the current is

9/R1 + R2 + 0.450 A = 9/R1       (1)

When the current increases by 0.225 A when only R2 is in the circuit, the current is

9/R1 + R2 + 0.225 A = 9/R2       (2)

equation (1) - (2) equals

9(1/R1 - 1/R2) = 0.450 A - 0.225

9(1/R1 - 1/R2) = 0.125

(1/R1 - 1/R2) = 0.125 A/9 = 0.0138

1/R1 = 0.0138 + 1/R2

R1 = R2/(1 + 0.0138R2)     (3)

From (1)

9/R1 - 9/R1 + R2 = 0.450 A

9R2/[R1(R1 + R2)] = 0.450 A

R2/[R1(R1 + R2)] = 0.450 A/9 = 0.5

R2/[R1(R1 + R2)] = 0.5    (4)

From (3) R2/R1 = (1 + 0.0138R2) and from (4) R2/R1 = 0.5(R1 + R2). So,

(1 + 0.0138R2) = 0.5(R1 + R2)

0.5R1 + 0.5R2 = 1 + 0.0138R2

0.5R1 = 1 + 0.0138R2 - 0.5R2

0.5R1 = 1 - 0.4862R2        (5)

Substituting (3) into (5) we have

0.5R2/(1 + 0.0138R2) = 1 - 0.4862R2

R2 = (1 + 0.0138R2)(1 - 0.4862R2)

R2 = 1 - 0.4724R2 - 0.0067R2²

Collecting like terms, we have

0.0067R2² + 0.4724R2 + R2 - 1 = 0

0.0067R2² + 1.4724R2 - 1 = 0

Using the quadratic formula,

R_{2} = \frac{-1.4724 +/-\sqrt{(1.4724)^{2} - 4 X 0.0067 X -1} }{2 X 0.0067}  \\= \frac{-1.4724 +/-\sqrt{2.1680 + 0.0268} }{0.0268}\\= \frac{-1.4724 +/-\sqrt{2.1948} }{0.0268}\\= \frac{-1.4724 +/- 1.4815 }{0.0268}\\= \frac{-1.4724 + 1.4815 }{0.0268} or \frac{-1.4724 - 1.4815 }{0.0268}\\= \frac{0.0091 }{0.0268} or \frac{-2.9539}{0.0268}\\= 0.340 or -110.22

We choose the positive answer.

So R2 = 0.340 Ω

From (5)

R1 = 0.5 - 0.9931R2

   = 0.5 - 0.9931 × 0.340

   = 0.5 - 0.338

   = 0.162 Ω

a. R1 = 0.162 Ω

b. R2 = 0.340 Ω

5 0
3 years ago
What is the mass of a rock lifted 2 meters off the ground that has 196 J of potential energy?
eimsori [14]

Answer:

10kg

Explanation:

Let PE=potential energy

PE=196J

g(gravitational force)=9.8m/s^2

h(change in height)=2m

m=?

PE=m*g*(change in h)

196=m*9.8*2

m=10kg

4 0
3 years ago
Which statement describes the reason for the change in the velocity of waves as temperature decreases?
DIA [1.3K]

Answer:

O The particles of the medium move more slowly and there are fewer chances to transfer energy.

Explanation:

Various media are made up of particles. These particles are in constant motion according to the kinetic theory of matter. Recall that temperature has been defined as the average kinetic energy of the particles in a medium. Hence, for any given medium, the velocity of particle motion increases or decreases linearly with temperature.

The speed of particles in any medium increases or decreases as the temperature of the medium increases or decreases as emphasised above. Hence, at low temperature, the velocity of waves set up by the motion of particles in a medium decreases and transfer the wave energy to neighbouring particles occurs more slowly than at high temperatures.

7 0
3 years ago
Io experiences tidal heating primarily because __________. hints io experiences tidal heating primarily because __________. io i
maxonik [38]
Lo experiences tidal heating primarily because lo’s elliptical orbit causes the tidal force on lo to vary as it orbits the Jupiter. Thus, lo’s elliptical orbit is essential to its tidal heating. This elliptical orbit, in turn, is an end result of the orbital resonance among lo, Europa and ganymade. This orbital resonance origin lo to have a more elliptical orbit than it would because lo intermittently passes Europa and ganymade in the same orbital position. We cannot perceive tidal forces of tidal heating in lo but rather we foresee that they must occur based on the orbital characteristic of the moons and active volcanoes on lo is the observational evidence that tidal heating is significant in lo.
8 0
4 years ago
Other questions:
  • A system of two objects has ΔKtot = 6 J and ΔUint = -5 J. Part A How much work is done by interaction forces? Express your answe
    5·1 answer
  • Please need help on this
    14·1 answer
  • As a clinical chemist in charge of the testing of blood samples. You are required to mix a solution of sodium chloride with wate
    13·1 answer
  • Do air bags increase pressure on the body during an accident
    5·1 answer
  • According to the theory of global warming, the average temperature of Earth’s air began rising rapidly when humans first started
    13·2 answers
  • Compare the kinetic energy of a 20,000-kg truck moving at 110 km/h with that of an 80.0-kg astronaut in orbit moving at 27,500 k
    5·1 answer
  • Can someone do this page for me please (or at least a question or two)
    11·1 answer
  • Formulating a Hypothesis: Part I Since the investigative question has two variables, you need to focus on each one separately. T
    6·2 answers
  • A 40 g block of ice is cooled to -69°C and is then added to 590 g of water in an 80 g copper calorimeter at a temperature of 22°
    14·1 answer
  • Every atom contains a<br> .............. which is positively charged
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!