Answer : The correct option is, (D) Velocity includes rate of change and direction.
Explanation :
Speed : Speed is defined as the distance traveled by an object with respect to the time taken. It is a scalar quantity that means it tell us about the magnitude of an object not direction.
Velocity : Velocity is defined as the rate of change of position of an object with respect to the time. It is a vector quantity that means it tell us about the magnitude and direction of an object.
The only difference between the speed and the velocity is that the velocity tell us about magnitude and direction but speed tell us about magnitude only.
Hence, the correct option is, (D) Velocity includes rate of change and direction.
Answer:
the two vehicles will be moving at a speed of 6.16 m/s
Explanation:
This is a case of completely inelastic collision, therefore, the conservation of momentum can be written as:

which given the information provided results into:

Answer:
a) The student feel light
b) Nbottom = 758 N
c) N'top= 236 N
d) N'bottom= 1055 N
Explanation:
a) W= 659N , Ntop= 560N
W > Ntop ---> Student feel less weight
b) Top:
∑F= W - Ntop = m.v²/R
m.v²/R = 659N - 560 N = 99 N
Bottom:
∑F= Nbottom- W = m.v²/R
Nbottom= W + m.v²/R = 659N + 99 N = 758N
c) W= 659 N , Ntop= 560 N , v'=2.v
N'top= ?
∑F= W - N'top = m.v'²/R
N'top= W - 4.m.v²/R
N'top = 659 N - 4. 99 N = 263 N
d) N'bottom = ?
∑Fbottom= N'bottom- W = m.v'²/R
N'bottom = W + 4.m.v²/R = 659 N + 4. 99 N = 1055 N
Answer:
Bowling Ball: weight on Earth = 49 N
Textbook: Mass = 2 kg; weight on the moon = 3.2 N
Large dog: weight on Earth = 490 N; weight on the moon = 80 N
Law of Universal Gravitation: 
= gravitational force (Newtons/N)
<em>G</em> = gravitational constant, 6.67430 × 10¹¹ 
<em>m</em>₁ and <em>m</em>₂ = masses of two objects (kilograms/kg)
<em>r</em>² = square of distance between centers of the two objects (meters/m)
Have a fantastic day!
Answer:
The metal atoms in the wire can't move, but their outer electrons can. The force pushes those electrons and they move to further parts of the wire, trying to reach the other end. As the electrons move away, new electrons flow into the wire through the battery to take their place.
Explanation: