Answer:
1.11 V
Explanation:
Given that the Einstein photoelectric equation states that;
KE = E - Wo
E = energy of incident photon
Wo= work function of the metal
E = hf = 6.64 x 10-34 * 6 x 1014
E = 39.84 * 10^-20 J or 3.98 * 10^-19 J
KE = 3.98 * 10^-19 J - 2.2 x 10-19J
KE = 1.78 * 10^-19J
We convert this value of KE to electron volts
KE = 1.78 * 10^-19J/1.6 x 10-19C
KE = 1.11 eV
Hence; 1.11 V will be just sufficient to stop electrons emitted by the sodium photo-plate reaching the collector plate.
Answer:

Explanation:
Given that,
The magnitude of magnetic field, B = 0.55 T
The radus of the loop, r = 43 cm = 0.43 m
The current in the loop, I = 5.8 mA = 0.0058 A
We need to find the magnetic moment of the loop. It is given by the relation as follows :

Put all the values,

So, the magnetic moment of the loop is equal to
.
Answer:
The level of seed in each feeder
Explanation:
The independent variable is the variable which is the suspected cause of an observation, it is the variable that produce the effect observed in the dependent variable. The dependent variable is the variable that is measured
The independent variable is normally the x-value while the dependent variable is the y-value
In the question, Lana wants to find out the kind of birdseed that the neighborhood birds like (to eat) the most by feeding them different types of birdseed and measuring the level of the birdseed in the feeders at regular intervals
the independent variable is the bird seed types which Lana gives to the birds, to determine the type of bird seeds the birds like
The dependent variable is the level of the seed in the feeder which depends on the type of seeds the birds like.
Answer:
A car moves up a hill at a constant velocity
Explanation:
Since the velocity is constant, the speed is also constant and so is the kinetic energy. However, total mechanical energy is sum of gravitational potential energy and kinetic energy, and the car is moving up the hill so its potential energy rises.
Thus, in the circumstances described the mechanical energy cannot be conserved.
The correct answer is A car moving up the hill with constant velocity.