Answer:
22.15 N/m
Explanation:
As we know potential energy = m*g*h
Potential energy of spring = (1/2)kx^2
m*g*h = (1/2)kx^2
Substituting the given values, we get -
(400)*(9.8)*(10) = (0.5)*(k)*(2.0^2)
k = 39200/2.645
k = 19600 N/m
For safety reasons, this spring constant is increased by 13 % So the new spring constant is
k = 19600 * 1.13 = 22148 N/m = 22.15 N/m
The answer is constructive interference. At the point when two waves meet such that their peaks line up together, then it's called productive obstruction. The subsequent wave has a higher adequacy. In dangerous obstruction, the peak of one wave meets the trough of another, and the outcome is a lower add up to adequacy.
Answer:
4.1 eV
Explanation:
Kinetic energy, K = 0.8 eV = 0.8 x 1.6 x 10^-19 J = 1.28 x 10^-19 J
wavelength, λ = 253.5 nm = 253.5 x 10^-9 m
According to the Einstein energy equation

Where, E be the energy incident, Wo is the work function and K is the kinetic energy.
h = 6.634 x 10^-34 Js
c = 3 x 10^8 m/s

So, the work function, Wo = E - K
Wo = 7.85 x 10^-19 - 1.28 x 10^-19
Wo = 6.57 x 10^-19 J
Wo = 4.1 eV
Thus, the work function of the metal is 4.1 eV.
The directions arrow<span> is </span>always<span> going the wrong </span>way<span>.</span>