In almost every case in nature, adding heat to a liquid
causes the density of the liquid to decrease. That is,
when the liquid gets warmer, it expands and occupies
more space.
The one big exception to this rule is water !
Starting with a block of ice at zero°C (32°F), as the ice melts,
becomes water at zero°C, and all the way to 4°C (about 39°F),
its density increases all the way. That is, it shrinks and occupies
less volume as it goes from ice at zero°C to water at 4°C.
This sounds like an interesting but insignificant quirk ... until
you realize that if water didn't do this, then life on Earth would
be impossible !
Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
Answer:
a) 4.04*10^-12m
b) 0.0209nm
c) 0.253MeV
Explanation:
The formula for Compton's scattering is given by:

where h is the Planck's constant, m is the mass of the electron and c is the speed of light.
a) by replacing in the formula you obtain the Compton shift:

b) The change in photon energy is given by:

c) The electron Compton wavelength is 2.43 × 10-12 m. Hence you can use the Broglie's relation to compute the momentum of the electron and then the kinetic energy.


PH of 4 is Acidic and its property is to turn blue litmus red
Answer:
Explanation:
a = (vf - vi) / t
a = (50 - 90) / 10.0
a = -4 km/h/s(1000 m/km / 3600 s/h)
a = - 1.11 m/s²