Answer:
All i kno is that that kid ain't gonna be ok
Explanation:
if u tell me how to do it ill do it
Wavelength of the water wave is 8 m
Explanation:
- Wavelength measures the distance between two successive crests or troughs of the wave. It is given by the following equation
λ = v/f, where f is the frequency, v is the velocity of the wave
Here, v = 20 m/s and f = 2.5 Hz
⇒ λ = 20/2.5
= 8 m
Answer:
164.87 J
Explanation:
From the question,
Work done (W) = mghcosθ........................ Equation 1
Where m = mass of the box, h = height, g = acceleration due to gravity, θ = angle to the vertical
Given: m = 25 kg, h = 2.6 meters, θ = 75°.
Constant: g = 9.8 m/s²
Substitute these value into equation 1
W = 25×9.8×2.6×cos75°
W = 164.87 J.
A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds
Answer:
1 / 2 m v^2 = L m g (1 - cos θ)
This is the KE due to the pendulum falling from a 25 deg displacement
v^2 = 2 L g (1 - cos 25) = 2 * 2 * 9.8 (1 - .906) = 3.67 m^2/s^2
v = 1.92 m/s this is the speed due to an initial displacement of 25 deg
Its speed at the bottom would then be
1.92 + 1.2 = 3.12 m/s since it gains 1.92 m/s from its initial displacement