We need to considerate only the horizontal component of the motion of the toy car.
The formula for the distance in a decelerated motion is:
s = s₀ + v₀·t - 1/2·a·t²
where:
s₀ = initial position = 0
v₀ = initial velocity = 1.21 m/s
t = time elapsed = 0.342 s
a = deceleration = 0.131 m/s²
Plugging in numbers:
s = 0 + 1.21×0.342 - 0.5×0.141×(0.342)²
= 0.406 m
Hence, the toy car traveled a distance of about 41 cm.
Answer:
Explanation:
Two straight wires
Have current in opposite direction
i1=i2=i=2Amps
Distance between two wires
r=5mm=0.005m
Length of one wire is ∞
Length of second wire is 0.3m
Force between the wire,
The force between two parallel currents I1 and I2, separated by a distance r, has a magnitude per unit length given by
F/l = μoi1i2/2πr
F/l=μoi²/2πr
μo=4π×10^-7 H/m
The force is attractive if the currents are in the same direction, repulsive if they are in opposite directions.
F/l = μoi1i2/2πr
F/0.3=4π×10^-7×2²/2π•0.005
F/0.3=1.6×10^-4
Cross multiply
F=1.6×10^-4×0.3
F=4.8×10^-5N
The acceleration of the car will be needed in order to calculate the time. It is important to consider that the final speed is equal to zero:

We can clear time in the speed equation:

If you find some mistake in my English, please tell me know.
Answer:
a
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
b
Explanation:
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
When
we have that

=> 
=>
Answer:
8.57 Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
The velocity, wavelength and frequency of a wave are related according to the equation:
Velocity = wavelength × frequency
v = λ × f
With the above formula, we can simply obtain the frequency of the wave as follow:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
v = λ × f
30 = 3.5 × f
Divide both side by 3.5
f = 30 / 3.5
f = 8.57 Hz
Thus, the frequency of the wave is 8.57 Hz