Answer:
L₀ = L_f , K_f < K₀
Explanation:
For this exercise we start as the angular momentum, with the friction force they are negligible and if we define the system as formed by the disk and the clay sphere, the forces during the collision are internal and therefore the angular momentum is conserved.
This means that the angular momentum before and after the collision changes.
Initial instant. Before the crash
L₀ = I₀ w₀
Final moment. Right after the crash
L_f = (I₀ + mr²) w
we treat the clay sphere as a point particle
how the angular momentum is conserved
L₀ = L_f
I₀ w₀ = (I₀ + mr²) w
w =
w₀
having the angular velocities we can calculate the kinetic energy
starting point. Before the crash
K₀ = ½ I₀ w₀²
final point. After the crash
K_f = ½ (I₀ + mr²) w²
sustitute
K_f = ½ (I₀ + mr²) (
w₀)²
Kf = ½
w₀²
we look for the relationship between the kinetic energy
= 

K_f < K₀
we see that the kinetic energy is not constant in the process, this implies that part of the energy is transformed into potential energy during the collision
Answer:
c
Explanation:
kinetic energy is energy an object has due to its movement. for instance, if someone was riding down a hill, when the motion of the bike begins to decrease so does the kinetic energy
( 8.10) x 10^4 J = ½(1010kg)V²
<span>......................= 505V² </span>
<span>( 8.10) x 10^4 J =[(.0505) x 10^4] V² ........<==10^4 cancels </span>
<span>8.10 = .0505 V² </span>
<span>.........______ </span>
<span>V = ²√ 160.4 </span>
<span>V= 12.6 m/s </span>
<span>(that's 12.6m/sec(1km/1000m)(3600secs/1hr) = 45.36kph) </span>
<span> my diagram is wrong, it is just an ordinary car, </span>
Hydroelectric power. That's just the term for electricity gained by using water, think of a water mill.
Answer:
momentum
Explanation:
the impulse is equal for both carts, the momentum for both carts is zero both before the string is cut and after it is cut