Answer:
k = 5178.8 N/m
Explanation:
As we know that spring mass system will oscillate at angular frequency given as

now we have

now the maximum acceleration of the spring block system is at its maximum compression state which is given as

here A= maximum compression of the spring
so here in order to find maximum compression of the spring we will use energy conservation as we know that initial total kinetic energy of the car will convert into spring potential energy

here we know that
v = 85 km/h

now we have


now from above equation of acceleration we have



Answer:
121 Joules
6.16717 m
Explanation:
m = Mass of the rocket = 2 kg
k = Spring constant = 800 N/m
x = Compression of spring = 0.55 m
Here, the kinetic energy of the spring and rocket will balance each other

The initial velocity of the rocket is 11 m/s = u.
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² = g

The maximum height of the rocket will be 6.16717 m
Potential energy is given by

The potential energy of the rocket at the maximum height will be 121 Joules
Answer:
63
Explanation:
You first have to add all the numbers together.
22+72+79+72+70 = 315
You divide the total by the amount of numbers (5)
315/5 = 63
The mean is 63
The things that a scientist should consider while observing
the force is the environmental conditions,the force that is expected to act on
the dam, the means to contain that force,
and compare different types of designs in accordance with the location
of the dam
False. What actually determines the properties of elements are the electrons, or aka valence electrons. They are used to bond, which determines its properties.