Answer:
Energy required = 3169.34 Joules.
Explanation:
The quantity of energy (Q) required can be determined by;
Q = mcΔθ
Where: m is the mass, c is the specific heat and Δθ is the change in temperature.
But, m = 96.7 kg, c = 0.874 J/(kg
),
=
and
=
.
So that,
Q = mc(
-
)
= 96.7 x 0.874 x (
-
)
= 96.7 x 0.874 x 37.5
= 3169.3425
Q = 3169.34
= 3.2 KJ
The amount of energy required is 3169.34 Joules.
The correct answer is Model A shows the three-dimensional shape of the molecule, but Model B does not.
Explanation:
Model A and B show the structure of a molecule. In the case of model A, the structure is represented through the use of three-dimensional shapes, while in model B the structure is represented using the letters of each element and showing how each element is connected to others.
In this context, one feature that makes model A better is that this represents the molecule using a 3D model, which is better to understand how the molecule looks like and what is its structure. Moreover, both models are alike because they show the number of atoms of each element, although model A does not show the types of elements.
Explanation:
Load=800N
Effort=200N
1. Mechanical Advantage = LOAD/EFFORT
= 800N/200N
= 4
2 Velocity Ratio = no. Of pulleys =5
3. Efficiency = Mechanical advantage / velocity ratio × 100%
= (4/5)×100%
=80%
4. output work= load×load distance
= 800N × 5m
= 4 × 1000J
5. Efficiency = (output work/input work) ×100%
Or, 80% = (4000J/input work) ×100%
Or, 80%/100% = 4000J/inputwork
Or, 4/5 = 4000J/inputwork
Or, input work =4000J × 5/4
Input work = 5×1000J
I hope it helped! ;-)