The energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.
<h3>Change in energy level of the electron</h3>
When photons jump from a higher energy level to a lower level, they emit or radiate energy.
The change in energy level of the electrons is calculated as follows;
ΔE = Eb - Ef
ΔE = -2.68 eV - (-5.74 eV)
ΔE = 3.06 eV
Thus, the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.
Learn more about energy level here: brainly.com/question/14287666
#SPJ1
Answer:

Explanation:
Height of the cliff is given as

now the time taken by the diver to hit the surface is given as



Now in the same time it has to cover a distance of 13.39 m
so the speed in horizontal direction is given as



Answer:
28.2 m/s
Explanation:
The range of a projectile launched from the ground is given by:

where
v is the initial speed
g = 9.8 m/s^2 is the acceleration of gravity
is the angle at which the projectile is thrown
In this problem we have
d = 81.1 m is the range
is the angle
Solving for v, we find the speed of the projectile:
