We will solve this problem using the direct concept related to band gap energy, that is, a band gap is the distance between the valence band of electrons and the conduction band, i. e, the energy range in a solid where no electron states (Electronic state) can exist Mathematically can be described as,

Where,
h = Planck's constant
n = Energy level
mc = Effective mass of the point charge
R = Size of the particle
As you can see the energy is inversely proportional to the size of the particle:

Therefore if the size is decreased, the amount of energy is increased.
Using the kinematic equation below we can determine the distance traveled if t=2, a=7.4m/s^2. First we must determine the final velocity:

Now we will determine the distance traveled:

Therefore, the drag racer traveled 81.83 meters in 2 seconds.
Answer:
the answer is A because
from tate 4 dozen is 48 and from joe the sixth multiple of eight is 48
Answer:
The force is -1620.73 N.
Explanation:
Given that,
Mass of car = 1000 kg
Velocity = 1 m/s
Distance = 2 m
Angle = 30°
We need to calculate the force
Using formula of work done





Put the value into the formula


Hence, The force is -1620.73 N.
Answer:
ΔP = (640 N/cm^2)
Explanation:
Given:-
- The volume increase, ΔV/V0 = 4 ✕ 10^-3
- The Bulk Modulus, B = 1.6*10^9 N/m^2
Find:-
Calculate the force exerted by the moonshine per square centimeter
Solution:-
- The bulk modulus B of a material is dependent on change in pressure or Force per unit area and change in volume by the following relationship.
B = ΔP / [(ΔV/V)]
- Now rearrange the above relation and solve for ΔP or force per unit area.
ΔP = B* [(ΔV/V)]
- Plug in the values:
ΔP = (1.6*10^9)*(4 ✕ 10^-3)
ΔP = 6400000 N/m^2
- For unit conversion from N/m^2 to N/cm^2 we have:
ΔP = (6400000 N/m^2) cm^2 / (100)^2 m^2
ΔP = (640 N/cm^2)