<u>Answer:</u> The correct answer is option A.
<u>Explanation:</u>
Nuclear fission reactions are a type of nuclear reactions in which larger nuclei breaks apart into two or more smaller fragment releasing alpha, gamma of beta particles.
There are 3 types of particles that can be released during this process:
1. Alpha particles: These particles are released when a nuclei undergoes alpha-decay process.

2. Beta particles: These particles are released when a nuclei undergoes beta-minus decay process.

3. Gamma radiations: these radiations are released when an unstable nuclei gives off excess energy by a process of spontaneous electromagnetic process.

Hence, any of these particles can be released during the process of fission reaction with smaller atoms.
Therefore, the correct answer is option A.
Following are the possible isomers of secondary alcohol and ketones for six carbon molecules. In order to distinguish between sec. alcohol and ketone we can simply treat the unknown compound with acidified Potassium Dichromate (VI) in the presence of acid. If with treatment with unknown compound the colour of K2Cr2O7 (potassium dichromate VI) changes from orange to green then it is confirmed that the unknown compound is sec. alcohol, or if no change in colour is detected then ketone is confirmed. This is because ketone can not be further oxidized while, sec. alcohol can be oxidized to ketones as shown below,
Answer:
343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Explanation:
A typical carbon–carbon bond requires 348 kJ/mol=348000 J/mol
Energy required to breakl sigle C-C bond:E


where,
E = energy of photon
h = Planck's constant = 
c = speed of light = 
= wavelength of the radiation
Now put all the given values in the above formula, we get the energy of the photons.



343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
B.
<span>genotype; phenotype
</span><span>Genetic variation determines inherited differences between individuals . Our height or eye color are inherited from our parents, but our phenotype is also affected by environment such as the food we eat (diet), drugs we take, toxins surrounding us, climate, location, culture, physical accidents and lifestyle.</span>