It has to weigh the same weight as the amount of water it displaces. eg - if it weighs a kg, it would have to displaces exactly 1 litre of water
The kind of reaction that is likely to be observed is a single displacement reaction where the metal displaces the H+ ion from the acid. The general chemical reaction would be written as 2M + 2HX = 2MX + H2 where M represents a metal and HX is the acid.
Answer:
Energy produced by the chip =10,460 Joules.
Explanation:
The specific heat of water is one calorie/gram ° C = 4.186 joules/gram ° C, which is higher than any other common substance. As a result, water plays a very important role in regulating temperature. The specific heat per gram for water is much greater than that of a metal, as described in the water-metal example. Replace the mass (m), the temperature change (ΔT), and the specific heat (c) of the solution in the equation Q = c x m x ΔT, where Q is the heat absorbed by the solution. For specific heat of water we goes as given in the question 4,184 J/kg°C
Q =4184×0.5×(25-20)
=10,460 Joules.
Thus heat gained by water (Q)= Energy produced by the chip =10,460 Joules.
Answer:
A pH scale reading 13 indicates a strong base.
Explanation:
From my understanding:
1 -4 is a strong acid
4 - 7 is weak acid
7 - 9 is a weak base
9 - 14 is a strong base