Answer:
People have been aware of magnets and magnetism for thousands of years. The earliest records date back to ancient times, particularly in the region of Asia Minor called Magnesia-the name of this region is the source of words like magnet. Magnetic rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. When humans first discovered magnetic rocks, they likely found that certain parts of these rocks attracted bits of iron or other magnetic rocks more strongly than other parts. These areas are called the poles of a magnet. A magnetic pole is the part of a magnet that exerts the strongest force on other magnets or magnetic material, such as iron. For example, the poles of the bar magnet shown in Figure 20.2 are where the paper clips are concentrated.
Answer:
A microwave
Explanation:
Car
Lightbulb is a really good one
Same with the sun. That one has Chemical as well
Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. A simple example involves a stationary car at the top of a hill. As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases. On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started.
This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.
One can also imagine the energy transformation in a pendulum. When the ball is at the top of its swing, all of the pendulum’s energy is potential energy. When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy. The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms
The magnitude of e.m.f induced in the loop when t = 2 s is 31 Volts.
<h3>emf induced in the loop</h3>
The magnitude of e.m.f induced in the loop is calculated as follows;
emf = dФ/dt
Ф = 6t² + 7t
dФ/dt = 12t + 7
at t = 2 seconds
emf = dФ/dt = 12(2) + 7 = 31 V
Thus, the magnitude of e.m.f induced in the loop when t = 2 s is 31 Volts.
Learn more about emf here: brainly.com/question/24158806
#SPJ1
It looks blue as it is only reflecting blue light