Answer:
a) F = 2.66 10⁴ N, b) h = 1.55 m
Explanation:
For this fluid exercise we use that the pressure at the tap point is
Exterior
P₂ = P₀ = 1.01 105 Pa
inside
P₁ = P₀ + ρ g h
the liquid is water with a density of ρ=1000 km / m³
P₁ = 0.85 1.01 10⁵ + 1000 9.8 5
P₁ = 85850 + 49000
P₁ = 1.3485 10⁵ Pa
the net force is
ΔP = P₁- P₂
Δp = 1.3485 10⁵ - 1.01 10⁵
ΔP = 3.385 10⁴ Pa
Let's use the definition of pressure
P = Fe / A
F = P A
the area of a circle is
A = pi r² = [i d ^ 2/4
let's reduce the units to the SI system
d = 100 cm (1 m / 100 cm) = 1 m
F = 3.385 104 pi / 4 (1) ²
F = 2.66 10⁴ N
b) the height for which the pressures are in equilibrium is
P₁ = P₂
0.85 P₀ + ρ g h = P₀
h =
h =
h = 1.55 m
The engineer built a device called a generator
Answer:
a) The velocity is 2.94m/s
b) 0.441
Explanation:
a) Assume gravity is 9.8m/s^2
Use the equation below to solve for the velocity at 0.30 seconds
,
vf =unknown velocity vi= initial velocity vi=0m/s a= 9.8m/s^2 t=0.30seconds
Step 1: Substitute the variables with the knowns

Step 2: Solve

b)
Use the equation below to solve for the displacement at 0.30 seconds

Step 1: Substitute the same variables with the knowns

Note that vi*t=0 as vi=0m/s
Step 2: Solve
x=0.441m
Answer:
<h3>The answer is 11 mL</h3>
Explanation:
To find the volume of the object we use the formula
volume of object = final volume of water - initial volume of water
From the question
final volume of water = 86 mL
initial volume of water = 75 mL
So we have
volume of object = 86 - 75
We have the final answer as
<h3>11 mL</h3>
Hope this helps you
Most of the momentum is transferred to the ball on top. Since the collision in this situation is elastic, momentum is conserved, meaning the momentum of both balls before hitting the floor is equal to the momentum of both balls right after the collision.