We will convert the 1dm3 in terms of cm3 as follows:
1dm^3 = (10 cm)^3
= 1000 cm^3
The mass of platinum is equal to 900 lb.
Then we will convert the mass in terms of grams as follows:
1 lb = 453.6 g
900 = 900 x 453.6 g
= 408240 g
Then density of platinum is equal to 21.4 g/cm^3
We will calculate the volume of platinum in mass 408240 g as follows:
Volume of platinum = mass of platinum / density of platinum
= 408240 g / 21.4 g/cm^3
= 19076.6 cm^3
The total volume of platinum is 19076.6 cm^3
The volume of platinum in 1 L bar is 1000cm^3
So, to calculate the number of bars we will use the formula as follows;
Number of bars = volume of platinum available / volume of platinum required in 1 L bar
= 19076.6 cm^3 / 1000 cm^3
= 19
So, the number of bars are 19.
Answer:
EXplained
Explanation:
from conservation of energy
change in potential energy = gain in kinetic energy
so as all he balls are throws from the same height thus the change in potential energy is the same for all the balls thus the gain in kinetic energy is the same for all the balls and as they have the same initial velocity thus the final velocity is the same for all the balls.
Answer:
A) 89.39 J
B) 30.39J
C) 23.8 J
Explanation:
We are given;
F = 30.2N
m = 3.5 kg
μ_k = 0.646
d = 2.96m
ΔEth (Block) = 35.2J
A) Work done by the applied force on the block-floor system is given as;
W = F•d
Thus, W = 30.2 x 2.96 = 89.39 J
B) Total thermal energy dissipated by the whole system which includes the floor and the block is given as;
ΔEth = μ_k•mgd
Thus, ΔEth = 0.646 x 3.5 x 9.8 x 2.96 = 65.59J
Now, we are given the thermal energy of the block which is ΔEth (Block) = 35.2J.
Thus,
ΔEth = ΔEth (Block) + ΔEth (floor)
Thus,
ΔEth (floor) = ΔEth - ΔEth (Block)
ΔEth (floor) = 65.59J - 35.2J = 30.39J
C) The total work done is considered as the sum of the thermal energy dissipated as heat and the kinetic energy of the block. Thus;
W = K + ΔEth
Therefore;
K = W - ΔEth
K = 89.39 - 65.59 = 23.8J
<span>At the exact instant the blue ball reaches maximum height, it is stationary for that millisecond in time before it begins to fall, therefore its speed is zero. (The other factors listed have no effect on the speed at the moment of maximum height.)</span>
Answer:
Q = 12.466μC
Explanation:
For the particle to execute a circular motion, the electrostatic force must be equal to the centripetal force:

Solving for Q:

Taking special care of all units, we can calculate the value of the charge:
Q = 12.466μC