1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
5

The resistivity of a metal increases slightly with increased temperature. This can be expressed as rho=rho0[1+α(T−T0)], where T0

is a reference temperature, usually 20∘C, and α is the temperature coefficient of resistivity. Part A First find an expression for the current I through a wire of length L, cross-section area A, and temperature T when connected across the terminals of an ideal battery with terminal voltage ΔV. Then, because the change in resistance is small, use the binomial approximation to simplify your expression. Your final expression should have the temperature coefficient α in the numerator. Express your answer in terms of L, A, T, T0, ΔV, rho0, and α.
Physics
1 answer:
Readme [11.4K]3 years ago
3 0

Answer:

I = ΔVA[1 - α (T₀ - T)]/Lρ₀

Explanation:

We have the following data:

ΔV = Battery Terminal Voltage

I = Current through wire

L = Length of wire

A = Cross-sectional area of wire

T = Temperature of wire, when connected across battery

T₀ = Reference temperature

ρ = Resistivity of wire at temperature T

ρ₀ = Resistivity of wire at reference temperature

α = Temperature Coefficient of Resistance

From OHM'S LAW we know that;

ΔV = IR

I = ΔV/R

but,  R = ρL/A   (For Wire)

Therefore,

I = ΔV/(ρL/A)

I = ΔVA/ρL

but,   ρ = ρ₀[1 + α (T₀ - T)]

Therefore,

I = ΔVA/Lρ₀[1 + α (T₀ - T)]

I = [ΔVA/Lρ₀] [1 + α (T₀ - T)]⁻¹

using Binomial Theorem:

(1 +x)⁻¹ = 1 - x + x² - x³ + ...

In case of [1 + α (T₀ - T)]⁻¹, x = α (T₀ - T).

Since, α generally has very low value. Thus, its higher powers can easily be neglected.

Therefore, using this Binomial Approximation, we can write:

[1 + α (T₀ - T)]⁻¹ = [1 - α (T₀ - T)]

Thus, the equation becomes:

<u>I = ΔVA[1 - α (T₀ - T)]/Lρ₀ </u>

You might be interested in
A box sits on a table. A short arrow labeled F subscript N points up. A short arrow labeled F subscript g points down. A long ar
Aloiza [94]

Answer:

unbalanced and right

Explanation:

7 0
2 years ago
Choose ALL of the answers that would support the theory of Continental Drift?
saveliy_v [14]
The answers are B, D, E!
7 0
2 years ago
Read 2 more answers
Cam Newton can sprint 40 meters in 5.79 seconds! How fast can he run?<br> Show your work
Setler79 [48]

Speed=Distance/Time

Distance=40m,time=5.79seconds

S=40/5.79

=6.908m/s

6 0
2 years ago
Read 2 more answers
In Example 2.7, we investigated a jet landing on an aircraft carrier. In a later maneuver, the jet comes in for a landing on sol
igor_vitrenko [27]

Answer:

a) 20 seconds

b) No.

Explanation:

t = Time taken for jet to stop

u = Initial velocity = 100 m/s (given in the question)

v = Final velocity = 0 (because the jet will stop at the end)

s = Displacement of the jet (Distance between the moment the jet touches the ground to the point the point it stops)

a = Acceleration = -5.00 m/s² (slowing down, so it is negative)

a) Equation of motion

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-100}{-5}\\\Rightarrow t=20\ s

The time required for the plane to slow down from the moment it touches the ground is 20 seconds.

s=ut+\frac{1}{2}at^2\\\Rightarrow s=100\times 20+\frac{1}{2}\times -5\times 20^2\\\Rightarrow s=1000\ m

The distance it requires for the jet to stop is 1000 m so in a small tropical island airport where the runway is 0.800 km long the plane would not be able to land. The runway needs to be atleast 1000 m long here the runway on the island is 1000-800 = 200 m short.

5 0
2 years ago
The three forces shown act on a particle. what is the direction of the resultant of these three forces?
melisa1 [442]
Missing figure: http://d2vlcm61l7u1fs.cloudfront.net/media/f5d/f5d9d0bc-e05f-4cd8-9277-da7cdda3aebf/phpJK1JgJ.png

Solution:
We need to find the magnitude of the resultant on both x- and y-axis.

x-axis) The resultant on the x-axis is
F_x = 65 N\cdot cos 30^{\circ} - 30 N - 20 N\cdot sin 20^{\circ} = 19.45 N
in the positive direction.

y-axis) The resultant on the y-axis is
F_y = 65 N \cdot sin 30^{\circ} - 20 N \cdot cos 20^{\circ} = 13.70 N
in the positive direction.

Both Fx and Fy are positive, so the resultant is in the first quadrant. We can find the angle and so the direction using
\tan \alpha =  \frac{F_y}{F_x} = \frac{13.70 N}{19.45 N}=0.7
from which we find 
\alpha=35^{\circ}
7 0
3 years ago
Other questions:
  • This question is select two answers, but I don't understand why A is wrong.
    15·1 answer
  • What conditions must be present for a translational and rotational equilibrium of a rigid body?
    15·1 answer
  • Please help have no clue on this
    11·1 answer
  • What type of convergent boundary is the himalayan mountains formed by
    13·1 answer
  • A building made with a steel structure is 565 m high on a winter day when the temperature is 0◦F. How much taller is the buildin
    13·1 answer
  • The alternating current which crosses an apparatus of 600 W has a maximum value of 2.5 A. What is efficient voltage between its
    8·1 answer
  • Henry mixed salt and water together in a cup until he observed a clear solution. He measured the mass of the solution. Then he p
    5·2 answers
  • Describe the formation of the land, the atmosphere, and the oceans of earth
    10·1 answer
  • What are the symptoms of hepatitis 'b'​
    6·1 answer
  • **please look at attached photo for proper understanding* Inside a cathode ray tube, an electron is in the presence of a uniform
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!