(2) impulse is a vector quantity. Energy has no direction, nor does power. Work is a dot product of vector quantities, which makes it a scalar.
Answer:Both
Explanation:
There are three ways to increase the induced voltage in electromagnetic induction:
1) increase the speed at which the conductor moves through the magnetic field. This means that the lines of flux are cut more quickly and more emf is induced.
2) use stronger magnets which provides a stronger magnetic field and more densely packed lines of flux.
3) use a coil of multiple loops.
Hence both technicians were correct.
Answer:
At 400 m the potential energy of the mountain climber doubled the initial value.
Explanation:
Given;
initial height of the mountain climber = 200 m
final height of the mountain climber, = 400 m
The potential energy of the mountain climber is calculated as;
Potential energy, P.E = mgh
At 200 m, P.E₁ = mg x 200 = 200mg
At 400 m, P.E₂ = mg x 400 = 400mg
Then, at 400 m, P.E₂ = 2 x 200mg = 2 x P.E₁
Therefore, at 400 m the potential energy of the mountain climber doubled the initial value.
The maximum allowable torque must correspond to the allowable shear stress for maximization. To solve this, we use the torsion formula:
Max. Allowable Shear Stress = Maximum Torque ÷ Cross-Sectional Area
8 x 10^6 Pa = Maximum Torque ÷ pi*(d/2)²
Maximum Torque = 8 x 10^6 Pa * pi*(0.06/2)² m²
Maximum Torque = 22,619.47 J or
Maximum Torque = 22.62 kJ
As for the second question, I have no reference figure so I am unable to answer it. I hope I was still able to help you, though.