The time taken for the plant to hit the ground from a distance of 7.01m and at a velocity of 8.84m/s is 1.59s.
<h3>How to calculate time?</h3>
The time taken for a motion to occur can be calculated using the following formula:
v² = u² - 2as
Where;
- v = final velocity
- u = initial velocity
- s = distance
- a = acceleration
8.84² = 0² + 2 × a × 7.01
78.15 = 14.02a
a = 5.57m/s²
V = u + at
8.84 = 0 + 5.57t
t = 1.59s
Therefore, the time taken for the plant to hit the ground from a distance of 7.01m and at a velocity of 8.84m/s is 1.59s.
Learn more about time at: brainly.com/question/13170991
#SPJ1
Initial volume of the gas (V1) = 10 inches^3
Initial pressure (P1) = 5 psi
Final pressure after compression of the gas (P1) = 10 psi
Let us assume the final volume of the gas (V2) = x
According to Boyle's Gas law, the pressure and volume of a gas remains constant under ideal condition. Then
P1V1= P2V2
5 * 10 = 10 * x
50 = 10x
x = 50/10
= 5 cubic inches
So the volume of the gas after it was compressed was 5 cubic inches. I hope the procedure is clear enough for you to understand.
Answer:
2.26 s
Explanation:
The following data were obtained from the question:
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =..?
The time taken for the egg to hit the floor can be obtained as illustrated below:
h = ½gt²
25 = ½ × 9.8 × t²
25 = 4.9 × t²
Divide both side by 4.9
t² = 25 / 4.9
Take the square root of both side
t = √(25 / 4.9)
t = 2.26 s
Thus, it will take 2.26 s for the egg to hit the floor.
Answer:
1. telescope
2.

f- focal length
f- focal length r- the radius of curvature of the mirror

p-the distance of the object from the vertex of the mirror
l-the distance of the figure from the vertex of the mirror
Answer:
KE = 100 J
Explanation: Should be correct