QUESTION:
Will both buzzers sound in this circuit?
ANSWER:
No, Only first buzzer sound. It is because the 2nd buzzer doesn't connected.
I think it is C since the mass will stay the same except not the gravity
Answer:
47.43 m/s
Explanation:
Given that,
Final speed of a plane, v = 0
Distance, d = 180 m
Acceleration of the plane, a = -6.25 m/s² (deceleration )
We need to find the plane's velocity. Let it was u. So, using the third equation of kinematics as :

So, the plane's velocity when it first touched the landing strip is 47.43 m/s.
A reference point Is simply all in which your following endeavours are based on
meaning this cannot be modified since it's what you based YOURS on!
hope this helps
Resistance = ρ * (L/A) and Rf = Ri * ([1 + α * (Tf – Ti)]
ρ = Resistivity L = length in meters A = cross sectional area in m^2 α = temperature coefficient of resistivity
L = 1.50 m Area = π * r^2 r = d/2 = 0.25 cm = 2.5 * 10^-3 m Area = π * (2.5 * 10^-3)^2
The cylindrical rod is similar to a resistor. Since the current is decreasing, the resistance must be increasing. This means the resistance is increasing as the temperature increases. Resistance = Voltage ÷ Current At 20˚, R = 15 ÷ 18.5 At 92˚, R = 15 ÷ 17.2
Now you know the resistance at the two temperatures. Let’s determine the resistivity at the two temperatures. Resistance = ρ * (L/A) ρ = Resistance * (A/L)
At 20˚, ρ = (15 ÷ 18.5) * [π * (2.5 * 10^-3)^2] ÷ 1.5 = At 92˚, ρ = (15 ÷ 17.2) * [π * (2.5 * 10^-3)^2] ÷ 1.5 =
Now you know the resistivity at the two temperatures. Let’s determine the temperature coefficient of resistivity for the material of the rod.
Rf = Ri * ([1 + α * (Tf – Ti)] Rf = 15 ÷ 17.2, Ri = 15 ÷ 18.5, Tf = 92˚, Ti = 20˚
15 ÷ 17.2 = 15 ÷ 18.5 * [1 + α * (92 – 20)] Multiply both sides by (18.5 ÷ 15) (18.5 ÷ 15) * (15 ÷ 17.2) = 1 + α * 72 Subtract 1 from both sides (18.5 ÷ 15) * (15 ÷ 17.2) – 1 = α * 72 Divide both sides by 72 α = 1.05 * 10^-3