Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
Intrusive igneous rocks cool down from magma slowly because they form underneath the surface, that will make them have large crystals.
Extrusive igneous rocks cool down from lava rapidly because they form at the surface, so that will make them have small crystals.
Answer: the airy pattern can only arise from wave propagation
Explanation:if particles went in straight lines through a slit, they would progate linearly and not interfere. The airy pattern arises from diffraction as waves interfere, producing peaks (constructive interference where peaks of waves from each slit coincide) and troughs (destructive interference where peaks and troughs of waves from each slit cancel out). If intensity rather than field is measured nodes occur where 0 values line up instead of troughs
Answer:
A) If you halve the wavelength, the electromagnetic radiation energy will double.
B) The energy of the electromagnetic radiation will halve if you halve the wavenumber.
C) When the frequency of the light is doubled, its energy will double.
Explanation:
The function for the light frequency is given as
The energy supplied to each electron is doubled by halving the wavelength, nearly doubling its kinetic energy by two after it is free from the metal. It is important to remember that for a given period of time, the number of electrons ejected will remain constant.
Cheers