Find the force that would be required in the absence of friction first, then calculate the force of friction and add them together. This is done because the friction force is going to have to be compensated for. We will need that much more force than we otherwise would to achieve the desired acceleration:

The friction force will be given by the normal force times the coefficient of friction. Here the normal force is just its weight, mg

Now the total force required is:
0.0702N+0.803N=0.873N
The frequency of rotation of Mars is 0.0000113 Hertz.
<u>Given the following data:</u>
- Period = 1 day and 37 minutes.
To find the frequency of rotation in Hertz:
First of all, we would convert the the value of period in days and minutes to seconds because the period of oscillation of a physical object is measured in seconds.
<u>Conversion:</u>
1 day = 24 hours
24 hours to minutes =
×
=
minutes

1 minute = 60 seconds
1477 minute = X seconds
Cross-multiplying, we have:
× 
X = 88620 seconds
Now, we can find the frequency of rotation of Mars by using the formula:

<em>Frequency </em><em>of rotation</em> = <em>0.0000113 Hertz</em>
Therefore, the frequency of rotation of Mars is 0.0000113 Hertz.
Read more: brainly.com/question/14708169
Answer:
10m
Explanation:
The object distance and image distance is the same from the mirror. so the image is 5m behind the mirror.
5+5=10
Answer:
V=14.9 m/s
Explanation:
In order to solve this problem, we are going to use the formulas of parabolic motion.
The velocity X-component of the ball is given by:

The motion on the X axis is a constant velocity motion so:

The whole trajectory of the ball takes 1.48 seconds
We know that:

Knowing the X and Y components of the velocity, we can calculate its magnitude by:
