<u>Answer:</u> The amount of sample left after 20 years is 288.522 g and after 50 years is 144.26 g
<u>Explanation:</u>
We are given a function that calculates the amount of sample remaining after 't' years, which is:

Putting values in above equation:


Hence, the amount of sample left after 20 years is 288.522 g
Putting values in above equation:


Hence, the amount of sample left after 50 years is 144.26 g
Answer:its y
Explanation:its going down with the most force, the end of the hill is the fastest if that makes sense
The Great Oxidation Event (GOE), sometimes also called the Great Oxygenation Event, Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust,[2] or Oxygen Revolution, was a time period when the Earth's atmosphere and the shallow ocean first experienced a rise in oxygen, approximately 2.4 billion years ago (2.4 Ga) to 2.1–2.0 Ga during the Paleoproterozoic era.[3] Geological, isotopic, and chemical evidence suggests that biologically produced molecular oxygen (dioxygen, O2) started to accumulate in Earth's atmosphere and changed Earth's atmosphere from a weakly reducing atmosphere to an oxidizing atmosphere,[4] causing many existing species on Earth to die out.[5] The cyanobacteria producing the oxygen caused the event which enabled the subsequent development of multicellular forms.
Answer:
Madar choad sale kuuuta kamina
<span>I would say only if one of your data points is the origin. But your experiment could have started with a non-zero velocity, for instance, which would rule out the origin as one of your data points. Even so, a "best fit" is not meant to be perfect, it is only meant to be the best that you can do with your particular data set.</span>