The two electrons that share an orbital repel each other.
All electrons bear a negative charge. They are held in their orbits by the attractive force of charged protons. The farther away an orbital is to the atomic nucleus the easier it is to expunge an electron from this distant orbital shell.
Explanation:
Because electrons have the same negative charge, they repel each other especially when they occupy the same orbital shell in an atom. To reduce this repulsion, each of the electrons in the orbital shell (remember electrons occupy orbital shells of atoms in 2s) assumes an opposite quantum (M<em>s</em>) spin; one with – ½ while the other + ½ .
Learn More:
For more about electrons check out;
brainly.com/question/13251728
brainly.com/question/13174681
#LearnWithBrainly
To determine the k for the second condition, we use the Arrhenius equation which relates the rates of reaction at different temperatures. We do as follows:
ln k1/k2 = E / R (1/T2 - 1/T1) where E is the activation energy and R universal gas constant.
ln 1.80x10^-2 / k2 = 80000 / 8.314 ( 1/723.15 - 1/593.15)
k2 = 0.3325 L / mol-s
The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of hydrogen gas to be used in the reaction. This will be the starting point of the calculations.
24.0 mol H2 (2 mol NH3 / 3 mol H2 ) = 16 mol NH3
Therefore, ammonia produced from the reaction given is 16 moles.