Answer:

Explanation:
Hello,
In this case, by knowing that the used NaOH equals in moles the acid (monoprotic) as shown below, during the titration:

By knowing the volume and the concentration of the NaOH, one obtains:

Thus, the molar mass of the acid is computed based on the previously computed moles and the given mass as follows:

Best regards.
Answer:
because it may cause burn that causes acid to build up which causes you to keep having an upset stomach
An aqueous solution of potassium sulfate exhibits colligative properties. Colligative properties are properties that depends on the concentration of a substance in a solution. These properties are freezing point depression, vapor pressure lowering, osmotic pressure and boiling point elevation. For this problem we use the concept of freezing point depression since we are given the freezing point of the solution. Freezing point depression is as:
ΔT = -k(f) x m x i
-2.24 - 0 = -1.86 x m x 3
<span>m = 0.4014
Thus, the molality of the solution is 0.4014.</span>
Given :
2NOBr(g) - -> 2NO(g) + Br2(g)
Initial pressure of NOBr , 1 atm .
At equilibrium, the partial pressure of NOBr is 0.82 atm.
To Find :
The equilibrium constant for the reaction .
Solution :
2NOBr(g) - -> 2NO(g) + Br2(g)
t=0 s 1 atm 0 0
1( 1-2x) 2x x
So ,

At equilibrium :
![K_{eq}=\dfrac{[NO]^2[br_2]}{[NOBr]^2}\\\\K_{eq}=\dfrac{0.18^2\times 0.9}{0.82^2}\\\\K_{eq}=0.043\ atm](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cdfrac%7B%5BNO%5D%5E2%5Bbr_2%5D%7D%7B%5BNOBr%5D%5E2%7D%5C%5C%5C%5CK_%7Beq%7D%3D%5Cdfrac%7B0.18%5E2%5Ctimes%200.9%7D%7B0.82%5E2%7D%5C%5C%5C%5CK_%7Beq%7D%3D0.043%5C%20atm)
Hence , this is the required solution .