You can just use basic
trigonometry to solve for the x & y components.
<span>vector a = 10cos(30) i +
10sin(30) j = <5sqrt(3), 5></span>
vector b is only slightly harder because the angle is relative
to vector a, and not the positive x-axis. Anyway, this just makes vector b with
an angle of 135deg to the positive x-axis.
<span>vector b = 10cos(135) i +
10sin(135) j = <-5sqrt(2), 5sqrt(2)></span>
So
now we can do the questions:
r = a + b
r = <5sqrt(3)-5sqrt(2), 5+5sqrt(2)>
(a)
5sqrt(3)-5sqrt(2)
(b)
5+5sqrt(2)
(c)
|r|
= sqrt( (5sqrt(3)-5sqrt(2))2 + (5+5sqrt(2))2 )
=
12.175
(d)
θ = tan-1 (
(5+5sqrt(2)) / (5sqrt(3)-5sqrt(2)) )
θ
= 82.5deg
<span> </span>
Answer:
11.714 kW
Explanation:
Here is the complete question
A loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 34.0∘ above the horizontal. The car accelerates uniformly to a speed of 2.25 m/s in 10.5 s and then continues at constant speed. What power must the winch motor provide when the car is moving at constant speed?
Solution
Since the loaded ore car moves along the mine shaft at an angle of θ = 34° to the horizontal, if F is the force exerted on the cable, then the net force on the laoded ore car is F - mgsinθ = ma where mgsinθ = component of the car's weight along the incline, m = mass of loaded ore car = 950 kg and a = acceleration
F = m(a + gsinθ)
When the car is moving at constant speed, a = 0
So F = m(a + gsinθ) = F = 950(0 + 9.8sin34) = 5206.1 N
Since it continues at a constant speed of v = 2.25 m/s, the power of the winch motor is P = Fv = 5206.1 N × 2.25 m/s = 11713.7 W = 11.714 kW
Answer:
D.
Explanation:
Force is strength and energy as an attribute of physical action or movement.
Answer:
C. Interference from the sun causes data to be collected inaccurately.
Explanation:
Snow predictions by meteorologists are sometimes incorrect because from the sun causes data to be collected inaccurately.
Answer:
Hans Christian Oersted began a new scientific epoch when he discovered that electricity and magnetism are linked. He showed by experiment that an electric current flowing through a wire could move a nearby magnet. The discovery of electromagnetism set the stage for the eventual development of our modern technology-based world.
Explanation: