This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.
Explanation:
Given that,
Mass of a freight car, 
Speed of a freight car, 
Mass of a scrap metal, 
(a) Let us assume that the final velocity of the loaded freight car is V. The momentum of the system will remain conserved as follows :

So, the final velocity of the loaded freight car is 0.182 m/s.
(b) Lost on kinetic energy = final kinetic energy - initial kinetic energy
![\Delta K=\dfrac{1}{2}[(m_1+m_2)V^2-m_1u_1^2)]\\\\=\dfrac{1}{2}\times [(30,000+110,000 )0.182^2-30000(0.85)^2]\\\\=-8518.82\ J](https://tex.z-dn.net/?f=%5CDelta%20K%3D%5Cdfrac%7B1%7D%7B2%7D%5B%28m_1%2Bm_2%29V%5E2-m_1u_1%5E2%29%5D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5B%2830%2C000%2B110%2C000%20%290.182%5E2-30000%280.85%29%5E2%5D%5C%5C%5C%5C%3D-8518.82%5C%20J)
Lost in kinetic energy is 8518.82. Negative sign shows loss.
Momentum = (mv).
<span>(2110 x 24) = 50,640kg/m/sec. truck momentum. </span>
<span>Velocity required for car of 1330kg to equal = (50,640/1330), = 38m/sec</span>
Gravity is the most likely force causing this phenomenon. please leave a thanks