Answer:
The net charge on each lysine molecule would be -1.
Explanation:
- <u>When the pH is above 2.2</u> the deprotonated form of the carboxylic acid is more present, while the amino group and side chain (which is also amino) remain protonated (with a positive charge):
R-COOH ↔ R-COO⁻
R-NH₃⁺
R'-NH₃⁺
Net charge = +1
- <u>When pH is above 9.0</u>, the carboxyl group remains deprotonated, while the amino group is deprotonated and the side chain is protonated:
R-COOH ↔ R-COO⁻
R-NH₂
R'-NH₃⁺
Net charge = 0
- <u>When pH is above 10.5</u>, the carboxyl group remains deprotonated, while both the amino group and the side chain are deprotonated:
R-COOH ↔ R-COO⁻
R-NH₂
R'-NH₂
Net charge = -1
So at pH=13 (which is above 10.5) the net charge is -1.
Answer: inhibitor
Explanation:
Enzymes have a shape that closely resemble that of the substrate hence they fit into the substrate by lock and key mechanism. The activity of the enzyme hinges on its similarity with the substrate in shape. Any other molecule similar to the shape of the substrate can fit into the substrate thereby preventing the enzyme from locking with the substrate. Such substances are called inhibitors. They decrease the activity of an enzyme.
Answer:
The equation of reaction pls
Does it react to form water