Explanation
Given
Mass of zinc = 5.0 g
We know molar mass of Zinc =
Answer:
- <em>Hydration number:</em> 4
Explanation:
<u>1) Mass of water in the hydrated compound</u>
Mass of water = Mass of the hydrated sample - mass of the dehydrated compound
Mass of water = 30.7 g - 22.9 g = 7.8 g
<u>2) Number of moles of water</u>
- Number of moles = mass in grams / molar mass
- molar mass of H₂O = 2×1.008 g/mol + 15.999 g*mol = 18.015 g/mol
- Number of moles of H₂O = 7.9 g / 18.015 g/mol = 0.439 mol
<u>3) Number of moles of Strontium nitrate dehydrated, Sr (NO₃)₂</u>
- The mass of strontium nitrate dehydrated is the constant mass obtained after heating = 22.9 g
- Molar mass of Sr (NO₃)₂ : 211.63 g/mol (you can obtain it from a internet or calculate using the atomic masses of each element from a periodic table).
- Number of moles of Sr (NO₃)₂ = 22.9 g / 211.63 g/mol = 0.108 mol
<u>4) Ratio</u>
- 0.439 mol H₂O / 0.108 mol Sr(NO₃)₂ ≈ 4 mol H₂O : 1 mol Sr (NO₃)₂
Which means that the hydration number is 4.
Ionic bond is a type of bond in which one or more atoms are transferred to another atom which results to two ions with opposite charge. They attract each other.
The atom of another element is removed and then gained by another element which produces a noble gas electron configuration.
Covalent bond is a type of bond in which a pair or more electrons are being shared by the atoms of two elements.
Because of this, the molecules become stable by sharing the electrons thus creating a noble gas configuration for each of the atom.
Answer:
Silicon does not form double bonds with oxygen, whereas carbon is capable of forming double bonds with oxygen. While the carbon dioxide molecular structure is linear, the silicon dioxide has an extended, different covalent structure.
Explanation:
If the sizes of the atoms of Silicon (Si) and Carbon (C) are compared to each other, the Si atoms are larger than carbon - which implies that the Si-O bonds will be longer than the C-O bonds. As a result, the p orbitals present on the Si and O atoms aren't very near to each other, in order to get together for the required overlap sideways which could have formed a stable pi bond. Hence, Silicon forms only single covalent bonds with Oxygen in silicon dioxide, in the form of a diamond structure with each Si atom being connected to its four neighbouring atoms through an O atom.
On the other hand, in the case of carbon dioxide, C is perfectly capable of forming double bonds with O. The different p orbitals are brought close together, resulting in a sideways overlap that leads to two pi bonds, twisted at a right angle to each other. As a result, the Carbon in carbon dioxide bonds with 2 oxygen atoms but not 4.
Answer:
H2 + I2 —> 2HI
Explanation:
H2 + I2 —> HI
Now, let us balance the equation. This can be achieved by doing the following:
There are 2 atoms of H on the left side of the equation and 1atom on the right side. It can be balance by putting 2 in front of HI as shown below:
H2 + I2 —> 2HI
Now the equation is balanced as there are equal numbers of atoms of the different elements present on both sides of the equation.