Answer:
77.96dB
Explanation:
Recall that decibels are a unit of measuring intensity of sound, and depend on the logarithm of the intensity
the intensity, measured in decibels is given by:
I(db)=10log(I/I0)
I is the intensity in MKS units; I0 is the threshold intensity for human hearing (10^-12 W/m^2)
Thus, if the two sounds together have a dB of 81, we know:
81=10log(I/I0)
using the data above, we can find the intensity of the two sounds to be
0.000125 W/m^2
therefore, one firecracker has an intensity half of that, or 0.0000625W/m^2
now use this value to find the dB of one firecracker:
I(dB0=10log(0.0000625/10^-12)=77.96dB
Answer:
45.8
Explanation:
becuse 9.8+36=45.8 simple
Question: In which situation would a space probe most likely experience centripetal acceleration?
as it revolves around a planet
as it flies straight past a moon
as it is pulled in a line toward the Sun
as it lifts off from Earth
Answer:
When "space probe revolves around a planet" most likely to experience centripetal acceleration
Explanation:
Centripetal acceleration defined as the rate in change of tangential velocity. Also, as per Newton's second law, any kind of force will be directly proportional to the acceleration attained by the object. So, for centripetal acceleration, the force will be the centripetal force. The centripetal force will be acting on an object rotating in a circular motion with its direction of force towards the center. Thus, centripetal acceleration will be experienced by an object or a space probe when it is in a circular motion. It means the space probe is revolving around a planet.
Electromagnetic force. It is where alike forces ( negative, negative & positive , positive) repel and opposite forces ( negative & positive ) attract.
Hopes this helped
Your answer is C
A constitutionally limited representative democratic republic [where] . . . the constitution, limits the power of government. We elect representatives, so it's not a pure democracy. But we do elect them by majority rule so it is democratic