1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
3 years ago
12

If a net force acting on a moving object causes its speed to increase, what

Physics
1 answer:
Klio2033 [76]3 years ago
7 0

Answer:

It increases.

Explanation:

If a force acts in the same direction as the object's motion, then the force speeds the object up. Either way, a force will change the velocity of an object. And if the velocity of the object is changed, then the momentum of the object is changed.

You might be interested in
a ball is projected upward at time t = 0.00 s from a point on a roof 70 m above the ground. The ball rises, then falls and strik
grin007 [14]

Answer: 17.68 s

Explanation:

This problem is a good example of Vertical motion, where the main equation for this situation is:  

y=y_{o}+V_{o}t-\frac{1}{2}gt^{2} (1)  

Where:  

y=0 is the height of the ball when it hits the ground  

y_{o}=70 m is the initial height of the ball

V_{o}=82m/s is the initial velocity of the ball  

t is the time when the ball strikes the ground

g=9.8m/s^{2} is the acceleration due to gravity  

Having this clear, let's find t from (1):  

0=70m+(82m/s)t-\frac{1}{2}(9.8m/s^{2})t^{2} (2)  

Rewritting (2):

-\frac{1}{2}(9.8m/s^{2})t^{2}+(82m/s)t+70m=0 (3)  

This is a quadratic equation (also called equation of the second degree) of the form at^{2}+bt+c=0, which can be solved with the following formula:

t=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}  (4)

Where:

a=-\frac{1}{2}(9.8m/s^{2}

b=82m/s

c=70m

Substituting the known values:

t=\frac{-82 \pm \sqrt{82^{2}-4(-\frac{1}{2}(9.8)(70)}}{2a}  (5)

Solving (5) we find the positive result is:

t=17.68 s

7 0
2 years ago
If the back of the truck is 1.3 m above the ground and the ramp is inclined at 22 ∘ , how much time do the workers have to get t
solong [7]
Refer to the diagram shown below.

Assume that
(a) The piano rolls down on frictionless wheels,
(b) Wind resistance is negligible.

The distance along the ramp is
d = (1.3 m)/sin(22°) = 3.4703 m

The component of the piano's weight along the ramp is
mg sin(22°)
If the acceleration down the ramp is a, then
ma = mg sin(22°)
a = g sin(22°) = (9.8 m/s²) sin(22°) = 3.671 m/s²

The time, t, to travel down the ramp from rest is given by
(3.4703 m) = 0.5*(3.671 m/s²)*(t s)²
t² = 3.4703/1.8355 = 1.8907
t = 1.375 s

Answer: 1.375 s

3 0
2 years ago
A positively charged particle moves through an electric field. As part of a complicated trajectory, the particle passes through
kow [346]

Answer:

(B) The speed is larger at A than at B.

Explanation:

Point B, the final point of the trajectory, has higher electric potential than point A, the initial point of the trajectory, so the electric potential energy of the charged particle increases, which means that its kinetic energy must be decreasing, thus the speed at B must be lower than the speed at A.

8 0
2 years ago
4) A satellite, mass m, is in circular orbit (radius r) around the earth, which has mass ME and radius Re. The value of r is lar
defon
<h2>Answers:</h2>

(a) The kinetic energy of a body is that energy it possesses due to its movement and is defined as:

K=\frac{1}{2}m{V}{2}     (1)

Where m is the mass of the body and V its velocity.

In this specific case of the satellite, its kinetic energy K_m taking into account its mass m is:

K_{m}=\frac{1}{2}m{V}^{2}     (2)

On the other hand, the velocity of a satellite describing a circular orbit is constant and defined by the following expression:

V=\sqrt{G\frac{ME}{r}}     (3)

Where G is the gravity constant, ME the mass of the Earth and r the radius of the orbit <u>(measured from the center of the Earth to the satellite). </u>

Now, if we substitute the value of V from equation (3) on equation (2), we will have the final expression of the kinetic energy of this satellite:

K_{m}=\frac{1}{2}m{\sqrt{G\frac{ME}{r}}}^{2}     (4)

Finally:

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)  >>>>This is the kinetic energy of the satellite

(b) According to Kepler’s 2nd Law applied in the case of a circular orbit, its Period T is defined as:

T=2\pi\sqrt{\frac{r^{3}}{\mu}}     (6)

Where \mu is a constant and is equal to GME. So, this equation in these terms is written as:

T=2\pi\sqrt{\frac{r^{3}}{GME}}     (7)

As we can see, <u>the Period of the orbit does not depend on the mass of the satellite </u>m, it depends on the mass of the greater body (the Earth in this case) ME, the radius of the orbit and the gravity constant.

(c) The gravitational force described by the law of gravity is a central force and therefore is <u>a conservative force</u>. This means:

1. The work performed by a gravitational force to move a body from a position A to a position B <u>only depends on these positions and not on the path followed to get from A to B. </u>

2. When the path that the body follows between A and B is a c<u>losed path or cycle</u> (as this case with a <u>circular orbit</u>), <u>the gravitational work is null or zero</u>.

<h2>This is because the gravity force that maintains an object in circular motion is a centripetal force, that is, <u>it always acts perpendicular to the movement</u>. </h2>

Then, in the case of the satellite orbiting the Earth in a circular orbit, its movement will always be perpendicular to the gravity force that attracts it to the planet, at each point of its path.

(d)  The total Mechanical Energy E of a body is the sum of its Kinetic Energy K and its Potential Energy P:

E=K+P     (8)

But in this specific case of the circular orbit, its kinetic energy will be expresses as calculated in the first answer (equation 5):

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)

And its potential energy due to the Earth gravitational field as:

P_{m}=-G\frac{mME}{r}     (9)

This energy is negative by definition.

So, the total mechanical energy of the orbit, also called the Orbital Energy is:

E=\frac{1}{2}Gm\frac{ME}{r}+(- G\frac{mME}{r})      (10)

Solving equation (10) we finally have the Orbital Energy:

E=-\frac{1}{2}mME\frac{G}{r}     (11)

At this point, it is necessary to clarify that a satellite (or any other celestial body) orbiting another massive body, can describe one of these types of orbits depending on its Orbital Total Mechanical Energy E:

-When E=0:

We are talking about an <u>open orbit</u> in which the satellite escapes from the attraction of the planet's gravitational field. The shape of its trajectory is a parabola, fulfilling the following condition:

K_{m}=-P_{m}

Such is the case of some comets in the solar system.

-When E>0:

We are also talking about <u>open orbits</u>, which are hyperbolic, being K_{m}>P_{m}

<h2>-When E: >>>><u>This case</u></h2>

We are talking about <u>closed orbits</u>, that is, the satellite will always be "linked" to the gravitational field of the planet and will describe an orbit that periodically repeats with a shape determined by the relationship between its kinetic and potential energy, as follows:

-Elliptical orbit: Although E is constant, K_m and P_m are changing along the trajectory .

-Circular orbit: When at all times both the kinetic energy K_m and the potential P_m remain constant, resulting in a total mechanical energy E as the one obtained in this exercise. This means that the speed is constant too and <u>is the explanation of why this Energy has a negative sign. </u>

3 0
3 years ago
A stone is thrown with an initial speed of 11.5 m/s at an angle of 50.0 above the horizontal from the top of a 30.0-m-tall build
rewona [7]

Answer:

The magnitude of the horizontal displacement of the rock is 7.39 m/s.

Explanation:

Given that,

Initial speed = 11.5 m/s

Angle = 50.0

Height = 30.0 m

We need to calculate the horizontal displacement of the rock

Using formula of horizontal component

v_{x}=u\cos\theta

Put the value into the formula

v_{x}=11.5\times\cos50

v_{x}=7.39\ m/s

Hence, The magnitude of the horizontal displacement of the rock is 7.39 m/s.

8 0
3 years ago
Other questions:
  • This is a sign of a chemical reaction that involves a new color being created during the reaction.
    6·1 answer
  • Does your BMR increase decrease stay the same or dissapear as you age?
    10·1 answer
  • two equal and unlike parallel forces of magnitude 34N act on a rigid body,such that the moment of couple is 8.50 Nm. calculate t
    12·1 answer
  • In an extreme marathon, participants run a total of 100km; world-class athletes maintain a pace of 15 km/h. how many 230 Calorie
    12·2 answers
  • What happens when a star exhausts its core hydrogen supply?
    11·1 answer
  • Which of the following objects has the most gravity? A. a semi-truck B. A grain of sand C. Jupiter D. All of these have equal gr
    10·1 answer
  • Question 12 of 20
    9·1 answer
  • Need help ASAP
    9·1 answer
  • What does weathering do?
    12·1 answer
  • A flat metal washer is heated. As the washer's temperature increases. What happens to the hole in the center?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!