The gravitational potential energy
gpe = mgh

Answer:
C. The distance traveled by an object at a certain velocity.
Explanation:
YW!
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
<u>Answer:</u>
The final velocity of the two railroad cars is 1.09 m/s
<u>Explanation:</u>
Since we are given that the two cars lock together it shows that the collision is inelastic in nature. The final velocity due to inelastic collision is given by

where
V= Final velocity
M1= mass of the first object in kgs = 12000
M2= mas of the second object in kgs = 10000
V1= initial velocity of the first object in m/s = 2m/s
V2= initial velocity of the second object in m/s = 0 (given at rest)
Substituting the given values in the formula we get
V = 2×12000 + 0x100012000 + 10000= 2400022000= 1.09 m/s

Which is the final velocity of the two railroad cars
Answer: The correct answer is option B.
Explanation:
Mass of the sled = 10 kg
Initial speed of the sled = 2 m/s
Kinetic energy of the sled = 

Work done by the sled = 20 joules
The work done by the friction will be in opposite direction and equal to the magnitude of the work done of the sled that - 20 J.
Hence, correct answer is option B.