The complete question is missing, so i have attached the complete question.
Answer:
A) FBD is attached.
B) The condition that must be satisfied is for ω_min = √(g/r)
C) The tension in the string would be zero. This is because at the smallest frequency, the only radially inward force at that point is the weight(force of gravity).
Explanation:
A) I've attached the image of the free body diagram.
B) The formula for the net force is given as;
F_net = mv²/r
We know that angular velocity;ω = v/r
Thus;
F_net = mω²r
Now, the minimum downward force is the weight and so;
mg = m(ω_min)²r
m will cancel out to give;
g = (ω_min)²r
(ω_min)² = g/r
ω_min = √(g/r)
The condition that must be satisfied is for ω_min = √(g/r)
C) The tension in the string would be zero. This is because at the smallest frequency, the only radially inward force at that point is the weight(force of gravity).
Direction from A to B divided by time(30s)
Answer:
if you look it up i think u can find it it could be a mealltiod Co 27
Explanation:
Answer:
the acceleration is 130.3m/s²
Explanation:
Given data
Force F= 18.9N
Mass of ball m= 0.145kg
Acceleration a=?
Applying the Newton's second law of motion
"The rate of change of momentum of a body is proportional to the external force".
F=ma
a= F/m
a= 18.9/0.142
a= 130.3m/s²