Answer:
the rate of turn at any airspeed is dependent upon the horizontal lift component
Divide 14 by 6 and there is your answer with the unit of m
Answer:
standing wave, also called stationary wave, combination of two waves moving in opposite directions, each having the same amplitude and frequency.
For oppositely moving waves, interference produces an oscillating wave fixed in space. fixed nodes in a standing wave. Location of fixed nodes in a standing wave
these are the points that undergo the maximum displacement during each vibrational cycle of the standing wave. In a sense, these points are the opposite of nodes, and so they are called antinodes. A standing wave pattern always consists of an alternating pattern of nodes and antinodes
Explanation:
The directions of magnetic force and magnetic field lines are shown in the figure.
The direction to find out the magnetic field lines is given by right hand curl rule. If the thumb shows the direction of current, then the curling fingers show the direction of magnetic field lines.
The direction of force can be given by right hand thumb rule, where
Thumb - Direction of magnetic field lines
Forefinger - Magnetic
force
Centre finger -
Current
Such that forefinger, centre finger and thumb must be at 90 degrees to each other.
Answer:
The high of the ramp is 2.81[m]
Explanation:
This is a problem where it applies energy conservation, that is part of the potential energy as it descends the block is transformed into kinetic energy.
If the bottom of the ramp is taken as a potential energy reference point, this point will have a potential energy value equal to zero.
We can find the mass of the box using the kinetic energy and the speed of the box at the bottom of the ramp.
![E_{k}=0.5*m*v^{2}\\\\where:\\E_{k}=3.8[J]\\v = 2.8[m/s]\\m=\frac{E_{k}}{0.5*v^{2} } \\m=\frac{3.8}{0.5*2.8^{2} } \\m=0.969[kg]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D0.5%2Am%2Av%5E%7B2%7D%5C%5C%5C%5Cwhere%3A%5C%5CE_%7Bk%7D%3D3.8%5BJ%5D%5C%5Cv%20%3D%202.8%5Bm%2Fs%5D%5C%5Cm%3D%5Cfrac%7BE_%7Bk%7D%7D%7B0.5%2Av%5E%7B2%7D%20%7D%20%5C%5Cm%3D%5Cfrac%7B3.8%7D%7B0.5%2A2.8%5E%7B2%7D%20%7D%20%5C%5Cm%3D0.969%5Bkg%5D)
Now applying the energy conservation theorem which tells us that the initial kinetic energy plus the work done and the potential energy is equal to the final kinetic energy of the body, we propose the following equation.
![E_{p}+W_{f}=E_{k}\\where:\\E_{p}= potential energy [J]\\W_{f}=23[J]\\E_{k}=3.8[J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%2BW_%7Bf%7D%3DE_%7Bk%7D%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%3D%20potential%20energy%20%5BJ%5D%5C%5CW_%7Bf%7D%3D23%5BJ%5D%5C%5CE_%7Bk%7D%3D3.8%5BJ%5D%5C%5C)
And therefore
![m*g*h + W_{f}=3.8\\ 0.969*9.81*h - 23= 3.8\\h = \frac{23+3.8}{0.969*9.81}\\ h = 2.81[m]](https://tex.z-dn.net/?f=m%2Ag%2Ah%20%2B%20W_%7Bf%7D%3D3.8%5C%5C%200.969%2A9.81%2Ah%20-%2023%3D%203.8%5C%5Ch%20%3D%20%5Cfrac%7B23%2B3.8%7D%7B0.969%2A9.81%7D%5C%5C%20h%20%3D%202.81%5Bm%5D)