Answer: I didn't see a difference because the large ball's vertical displacement and velocity are the same as the small one's.
Explanation:
Answer:
1) f= 8.6 GHz
2) t= 0.2 ms
Explanation:
1)
- Since microwaves are electromagnetic waves, they move at the same speed as the light in vacuum, i.e. 3*10⁸ m/s.
- There exists a fixed relationship between the frequency (f) , the wavelength (λ) and the propagation speed in any wave, as follows:

- Replacing by the givens, and solving for f, we get:

⇒ f = 8.6 Ghz (with two significative figures)
2)
- Assuming that the microwaves travel at a constant speed in a straight line (behaving like rays) , we can apply the definition of average velocity, as follows:
where v= c= speed of light in vacuum = 3*10⁸ m/s
d= distance between mountaintops = 52 km = 52*10³ m

⇒ t = 0.2 ms (with two significative figures)
mass of the bottle in each case is M = 0.250 kg
now as per given speeds we can use the formula of kinetic energy to find it
1) when speed is 2 m/s
kinetic energy is given as


2) when speed is 3 m/s
kinetic energy is given as


3) when speed is 4 m/s
kinetic energy is given as


4) when speed is 5 m/s
kinetic energy is given as


5) when speed is 6 m/s
kinetic energy is given as


Temperature is usually expressed in degrees Fahrenheit or Celsius. 0 degrees Celsius is equal to 32 degrees Fahrenheit. Room temperature is typically considered 25 degrees Celsius, which is equal to 77 degrees Fahrenheit.