Answer:
92.04%
Explanation:
Given:
Mass of CO₂ obtained = 53.0 grams
Mass of calcium carbonate heated = 1.31 grams
Now,
the molar mass of the calcium carbonate = 100.08 grams
The number of moles heated in the problem = Mass / Molar mass
= (1.31 grams) / (100.08 grams/moles)
= 0.013088 moles
now,
1 mol of calcium carbonate yields 1 mol of CO₂
thus,
0.013088 moles of calcium carbonate will yield = 0.013088 mol of CO₂
now,
Theoretical mass of 0.013088 moles of CO₂ will be
= Number of moles × Molar mass of CO₂
= 0.013088 × 44 = 0.5758 grams
Thus, the percent yield for this reaction = 
or
the percent yield for this reaction = 
or
the percent yield for this reaction = 92.04%
When The balanced equation is:
2Al + 3CuCl2 ⇒3 Cu + 2AlCl3
So, we want to find the limiting reactant:
1- no. of moles of 2Al = MV/n = (Wt * V )/ (M.Wt*n*V) = Wt / (M.Wt *n)
where M= molarity, V= volume per liter and n = number of moles in the balanced equation.
by substitute:
∴ no. of moles of 2Al = 0.2 / (26.98 * 2)= 0.003706 moles.
2- no.of moles of 3CuCl2= M*v / n = (0.5*(15/1000)) / 3= 0.0025 moles.
So, CuCl2 is determining the no.of moles of the products.
∴The no. of moles of 3Cu = 0.0025 moles.
∴The no.of moles of Cu= 3*0.0025= 0.0075 moles.
and ∵ amount of weight (g)= no.of moles * M.Wt = 0.0075 * M.wt of Cu
= 0.0075 * 63.546 =0.477 g
<h2>
contains both covalent and ionic bonds.</h2>
Explanation:
A covalent bond is formed when an element shares its valence electron with another element. This bond is formed between two non metals.
An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element or the metal and the element which accepts the electrons is known as electronegative element or non metal.
a.
contain covalent bonds as they are made up of non metals only.
b.
contain ionic bonds as they are made up of sodium metal and fluorine non metal.
c.
contain covalent bonds as they are made up of non metals only.
d.
contain ionic bonds between
and
and covalent between N and H in 
Learn more about ionic and covalent bonds
brainly.com/question/13212100
brainly.com/question/2877158