Take a zip lock bag and draw clouds on the outside with a sharpie then fill the bag with water and then tape it on a window that has a lot of sun and wait awhile and there should be a change in the water and that shooed what happens to water when it’s warm/sunny out
Answer:
HOAc is stronger acid than HClO
ClO⁻ is stronger conjugate base than OAc⁻
Kb(OAc⁻) = 5.5 x 10⁻¹⁰
Kb(ClO⁻) = 3.3 x 10⁻⁷
Explanation:
Assume 0.10M HOAc => H⁺ + OAc⁻ with Ka = 1.8 x 10⁻⁵
=> [H⁺] = √Ka·[Acid] =√(1.8 x 10⁻⁵)(0.10) M = 1.3 x 10⁻³M H⁺
Assume 0.10M HClO => H⁺ + ClO⁻ with Ka = 3 x 10⁻⁸
=> [H⁺] = √(3 x 10⁻⁸)(0.10)M = 5.47 x 10⁻⁵M H⁺
HOAc delivers more H⁺ than HClO and is more acidic.
Kb = Kw/Ka, Kw = 1 x 10⁻¹⁴
Kb(OAc⁻) = 5.5 x 10⁻¹⁰
Kb(ClO⁻) = 3.3 x 10⁻⁷
Answer:
30 g of magnesium would be combined with 20 g of oxygen. The law used solving this problem is the Lavoisier Law of conservation of mass.
Explanation:
If 60 g of magnesium combines with 40 g of oxygen to make 100 g of magnesium oxide, then 30 g of magnesium will combine with 20 g of oxygen to make 50 g of magnesium oxide.
This happens because in a chemical reaction there is no creation or descruction of atoms, only a rearrangement. Therefore, the mass of reactants should be equal to the mass of products.
The following equation represents the proportions of the substances:
Mg + 1/2O₂ → MgO
Answer: The body produce NADPH a reducing equivalents as antioxidants.
Explanation:
During the pentose phosphate pathway reducing equivalents like NADPH is produced which help to prevent oxidative stress. It reduces glutathione via glutathione reductase which converts reactive H2O2 to H2O by glutathione peroxidase.