1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
3 years ago
9

A circular flat coil that has N turns, encloses an area A, and carries a current i, has its central axis parallel to a uniform m

agnetic field B in which it is immersed. The net force on the coil is
-Zero


-NiAB


-NiB


-NiA


-iBA


Is the answer zero because the coil is placed parallel to the magnetic field?
Physics
1 answer:
gogolik [260]3 years ago
3 0

Answer:

A. Zero

Explanation:

The force on a coil of N turns, enclosing an area, A and carrying a current I in the presence of a magnetic field B, is :

F = N * I * A * B * sinθ

Where θ is the angle between the normal of the enclosed area and the magnetic field.

Since the normal of the area is parallel to the magnetic field, θ = 0

Hence:

F = NIABsin0

F = 0 or Zero

You might be interested in
Big Ben, a large artifact in England, has a mass of 1x10^8 kilograms and the Empire State Building 1x10^9 kilograms. The distanc
TiliK225 [7]

Answer:

The force, exerted by Big Ben on the Empire State Building is 2.66972 × 10⁻⁷ N

Explanation:

The question relates to the force of gravity experienced between two bodies

The given parameters are;

The mass of Big Ben, M₁ = 1 × 10⁸ kg

The mass of the Empire State Building, M₂ = 1 × 10⁹ kg

The distance between the two Big Ben and the Empire State Building, r = 5,000,000 meters

By Newton's Law of gravitation, we have;

F=G \times \dfrac{M_{1} \times M_{2}}{r^{2}}

Where;

F = The force exerted by Big Ben on the Empire State Building and vice versa

G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²

M₁, M₂, and r are the given parameters

By plugging in the values of the parameters and the constant into the equation for Newton's Law of gravitation, we have;

F=6.67430 \times 10^{-11} \times \dfrac{1 \times 10^8 \times 1 \times 10^9}{(5,000,000)^{2}} = 2.66972 \times 10^{-7}

The force, 'F', exerted by Big Ben on the Empire State Building is F = 2.66972 × 10⁻⁷ N.

3 0
3 years ago
A girl throws a ball of mass 0.8 kg against a wall. The ball strikes the wall horizontally with a speed of 11 m/s, and it bounce
Karolina [17]

Answer:

F = 352 N

Explanation:

we know that:

F*t = ΔP

so:

F*t = MV_f-MV_i

where F is the force excerted by the wall, t is the time, M the mass of the ball, V_f the final velocity of the ball and V_i the initial velocity.

Replacing values, we get:

F(0.05s) = (0.8 kg)(11m/s)-(0.8 kg)(-11m/s)

solving for F:

F = 352 N

 

3 0
3 years ago
A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack, as the drawing illustrates. ignore frictiona
Blizzard [7]
I just solved similar type of question. You can refer to my solution which I have attached

8 0
3 years ago
What is not an example of Absorption? (Physics)
amm1812

When a light wave strikes an object, it can be absorbed, reflected, or refracted by the object. All objects have a degree of reflection and absorption. ... In the natural world, light can also be transmitted by an object. That is, light can pass through an object with no effect (an x-ray, for example).

5 0
3 years ago
A child throws a baseball upward with an initial velocity of 20 m/s. The child wants to throw the baseball at least as high as t
Umnica [9.8K]
When the ball starts its motion from the ground, its potential energy is zero, so all its mechanical energy is kinetic energy of the motion:
E= \frac{1}{2}mv^2
where m is the ball's mass and v its initial velocity, 20 m/s.

When the ball reaches its maximum height, h, its velocity is zero, so its mechanical energy is just gravitational potential energy:
E=mgh

for the law of conservation of energy, the initial mechanical energy must be equal to the final mechanical energy, so we have
\frac{1}{2}mv^2 = mgh
From which we find the maximum height of the ball:
h= \frac{v^2}{2g}= \frac{(20 m/s)^2}{2 \cdot 9.81 m/s^2}=20.4 m

Therefore, the answer is yes, the ball will reach the top of the tree.

5 0
3 years ago
Other questions:
  • true or false? Heather and Matthew walk with an average velocity of .75 m/s eastward. If it takes them 25 min to walk to the par
    7·1 answer
  • A wood block is sliding up a wood ramp. if the ramp is very steep, the block will reverse direction at its highest point and sli
    14·1 answer
  • Gold has a density of 19.3 g/cm3. I fyou has a 2.00 cm3 block of gold, what would be its mass?
    9·1 answer
  • A ball is projected vertically downward at a speed of 4.00 m/s. How far does the bal travel in 1.80 s? What is the velocity of t
    10·1 answer
  • What provides the force on the person in the passenger seat?
    14·1 answer
  • Si un balón tiene una masa aproximada de 0.5 kg ¿con que fuerza hay que patearlo para imprimirle una aceleración de 1.5m/s2?
    11·1 answer
  • 1. Who explained the motions of the planets of the solar system at the same
    6·1 answer
  • write at least 5 sentences answering the question, "How does the height of a ramp affect the speed of an object rolling down tha
    11·1 answer
  • A 23 g bullet traveling at 230 m/s penetrates a 2.0 kg block of wood and emerges cleanly at 170 m/s. If the block is stationary
    13·1 answer
  • How much longer (percentage) is a one-mile race than a 1500-m race (""the metric mile"")?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!